BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34107196)

  • 21. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia.
    Alayoubi AM; Khawaji ZY; Mohammed MA; Mercier FE
    Ann Hematol; 2024 Jun; 103(6):1805-1817. PubMed ID: 37736806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.
    Wen J; Tao W; Hao S; Zu Y
    J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-Mediated Correction of the Sickle Mutation in Human CD34+ cells.
    Hoban MD; Lumaquin D; Kuo CY; Romero Z; Long J; Ho M; Young CS; Mojadidi M; Fitz-Gibbon S; Cooper AR; Lill GR; Urbinati F; Campo-Fernandez B; Bjurstrom CF; Pellegrini M; Hollis RP; Kohn DB
    Mol Ther; 2016 Sep; 24(9):1561-9. PubMed ID: 27406980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular scissors cut in on stem cells.
    Azvolinsky A
    Nat Med; 2019 Jun; 25(6):864-866. PubMed ID: 31086349
    [No Abstract]   [Full Text] [Related]  

  • 25. CRISPR/Cas9-based gene-editing technology for sickle cell disease.
    Ma L; Yang S; Peng Q; Zhang J; Zhang J
    Gene; 2023 Jul; 874():147480. PubMed ID: 37182559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CRISPR-mediated gene modification of hematopoietic stem cells with beta-thalassemia IVS-1-110 mutation.
    Gabr H; El Ghamrawy MK; Almaeen AH; Abdelhafiz AS; Hassan AOS; El Sissy MH
    Stem Cell Res Ther; 2020 Sep; 11(1):390. PubMed ID: 32912325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of Fetal Hemoglobin by Gene Therapy.
    Walters MC
    N Engl J Med; 2021 Jan; 384(3):284-285. PubMed ID: 33471981
    [No Abstract]   [Full Text] [Related]  

  • 29. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus.
    Antoniani C; Meneghini V; Lattanzi A; Felix T; Romano O; Magrin E; Weber L; Pavani G; El Hoss S; Kurita R; Nakamura Y; Cradick TJ; Lundberg AS; Porteus M; Amendola M; El Nemer W; Cavazzana M; Mavilio F; Miccio A
    Blood; 2018 Apr; 131(17):1960-1973. PubMed ID: 29519807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 system and its applications in human hematopoietic cells.
    Hu X
    Blood Cells Mol Dis; 2016 Nov; 62():6-12. PubMed ID: 27736664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspectives of Sickle Cell Disease Stakeholders on Heritable Genome Editing.
    Hollister BM; Gatter MC; Abdallah KE; Armsby AJ; Buscetta AJ; Byeon YJJ; Cooper KE; Desine S; Persaud A; Ormond KE; Bonham VL
    CRISPR J; 2019 Dec; 2(6):441-449. PubMed ID: 31742431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A plethora of gene therapies for hemoglobinopathies.
    Dunbar CE
    Nat Med; 2021 Feb; 27(2):202-204. PubMed ID: 33526930
    [No Abstract]   [Full Text] [Related]  

  • 33. [Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system].
    Tan JJ; Peng YZ; Huang GT
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):681-687. PubMed ID: 34304411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR Therapeutics, Vertex Complete Rolling Biologics License Applications for Exa-Cel in Sickle Cell Disease, Beta Thalassemia.
    Philippidis A
    Hum Gene Ther; 2023 May; 34(9-10):341-344. PubMed ID: 37219993
    [No Abstract]   [Full Text] [Related]  

  • 35. Drug pipeline 3Q23 - ERT, bispecifics and CRISPR in sickle cell disease.
    Hodgson J
    Nat Biotechnol; 2023 Nov; 41(11):1498-1500. PubMed ID: 37950006
    [No Abstract]   [Full Text] [Related]  

  • 36. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virus-Based CRISPR/Cas9 Genome Editing in Plants.
    Liu H; Zhang B
    Trends Genet; 2020 Nov; 36(11):810-813. PubMed ID: 32828551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The promise and challenge of therapeutic genome editing.
    Doudna JA
    Nature; 2020 Feb; 578(7794):229-236. PubMed ID: 32051598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.