These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 34107197)
1. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Reply. Frangoul H; Ho TW; Corbacioglu S N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107197 [No Abstract] [Full Text] [Related]
2. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Mehta J N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107196 [No Abstract] [Full Text] [Related]
3. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Meisel R N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107195 [No Abstract] [Full Text] [Related]
4. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Parums DV Med Sci Monit; 2024 Mar; 30():e944204. PubMed ID: 38425279 [TBL] [Abstract][Full Text] [Related]
5. Treatment by CRISPR-Cas9 Gene Editing - A Proof of Principle. Malech HL N Engl J Med; 2021 Jan; 384(3):286-287. PubMed ID: 33471982 [No Abstract] [Full Text] [Related]
6. CRISPR in personalized medicine: Industry perspectives in gene editing. Hong A Semin Perinatol; 2018 Dec; 42(8):501-507. PubMed ID: 30376985 [TBL] [Abstract][Full Text] [Related]
7. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644 [TBL] [Abstract][Full Text] [Related]
12. Tweaking genes with CRISPR or viruses fixes blood disorders. Kaiser J Science; 2020 Dec; 370(6522):1254-1255. PubMed ID: 33303593 [No Abstract] [Full Text] [Related]
13. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989 [TBL] [Abstract][Full Text] [Related]
14. [Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology]. Bao LW; Zhou YY; Zeng FY Yi Chuan; 2020 Oct; 42(10):949-964. PubMed ID: 33229321 [TBL] [Abstract][Full Text] [Related]
15. UK first to approve CRISPR treatment for diseases: what you need to know. Wong C Nature; 2023 Nov; 623(7988):676-677. PubMed ID: 37974039 [No Abstract] [Full Text] [Related]
16. The Cas9 Hammer-and Sickle: A Challenge for Genome Editors. Urnov FD CRISPR J; 2021 Feb; 4(1):6-13. PubMed ID: 33616446 [TBL] [Abstract][Full Text] [Related]
17. Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutation. Chu SH; Packer M; Rees H; Lam D; Yu Y; Marshall J; Cheng LI; Lam D; Olins J; Ran FA; Liquori A; Gantzer B; Decker J; Born D; Barrera L; Hartigan A; Gaudelli N; Ciaramella G; Slaymaker IM CRISPR J; 2021 Apr; 4(2):169-177. PubMed ID: 33876959 [TBL] [Abstract][Full Text] [Related]
18. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808 [TBL] [Abstract][Full Text] [Related]
19. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144 [TBL] [Abstract][Full Text] [Related]