These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34107214)

  • 1. Metabolomic Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry.
    Di Poto C; Tian X; Peng X; Heyman HM; Szesny M; Hess S; Cazares LH
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):2072-2080. PubMed ID: 34107214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine.
    Nye LC; Williams JP; Munjoma NC; Letertre MPM; Coen M; Bouwmeester R; Martens L; Swann JR; Nicholson JK; Plumb RS; McCullagh M; Gethings LA; Lai S; Langridge JI; Vissers JPC; Wilson ID
    J Chromatogr A; 2019 Sep; 1602():386-396. PubMed ID: 31285057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a rapid profiling method for the analysis of polar analytes in urine using HILIC-MS and ion mobility enabled HILIC-MS.
    King AM; Mullin LG; Wilson ID; Coen M; Rainville PD; Plumb RS; Gethings LA; Maker G; Trengove R
    Metabolomics; 2019 Jan; 15(2):17. PubMed ID: 30830424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid HILIC-Z ion mobility mass spectrometry (RHIMMS) method for untargeted metabolomics of complex biological samples.
    Pičmanová M; Moses T; Cortada-Garcia J; Barrett G; Florance H; Pandor S; Burgess K
    Metabolomics; 2022 Feb; 18(3):16. PubMed ID: 35229219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion mobility derived collision cross sections to support metabolomics applications.
    Paglia G; Williams JP; Menikarachchi L; Thompson JW; Tyldesley-Worster R; Halldórsson S; Rolfsson O; Moseley A; Grant D; Langridge J; Palsson BO; Astarita G
    Anal Chem; 2014 Apr; 86(8):3985-93. PubMed ID: 24640936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-Performance Liquid Chromatography-Ion Mobility Separation-Quadruple Time-of-Flight MS (UHPLC-IMS-QTOF MS) Metabolomics for Short-Term Biomarker Discovery of Orange Intake: A Randomized, Controlled Crossover Study.
    Lacalle-Bergeron L; Portolés T; López FJ; Sancho JV; Ortega-Azorín C; Asensio EM; Coltell O; Corella D
    Nutrients; 2020 Jun; 12(7):. PubMed ID: 32610451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry.
    Paglia G; Astarita G
    Nat Protoc; 2017 Apr; 12(4):797-813. PubMed ID: 28301461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics.
    Szykuła KM; Meurs J; Turner MA; Creaser CS; Reynolds JC
    Anal Bioanal Chem; 2019 Sep; 411(24):6309-6317. PubMed ID: 31011786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry.
    Nichols CM; Dodds JN; Rose BS; Picache JA; Morris CB; Codreanu SG; May JC; Sherrod SD; McLean JA
    Anal Chem; 2018 Dec; 90(24):14484-14492. PubMed ID: 30449086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer.
    Meier F; Brunner AD; Koch S; Koch H; Lubeck M; Krause M; Goedecke N; Decker J; Kosinski T; Park MA; Bache N; Hoerning O; Cox J; Räther O; Mann M
    Mol Cell Proteomics; 2018 Dec; 17(12):2534-2545. PubMed ID: 30385480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry.
    George AC; Schmitz-Afonso I; Marie V; Colsch B; Fenaille F; Afonso C; Loutelier-Bourhis C
    Anal Chim Acta; 2022 Sep; 1226():340236. PubMed ID: 36068052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics.
    Causon TJ; Si-Hung L; Newton K; Kurulugama RT; Fjeldsted J; Hann S
    Anal Bioanal Chem; 2019 Sep; 411(24):6265-6274. PubMed ID: 31302708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapped ion mobility spectrometry-mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics.
    Chen X; Yin Y; Luo M; Zhou Z; Cai Y; Zhu ZJ
    Anal Chim Acta; 2022 Jun; 1210():339886. PubMed ID: 35595363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of ion mobility-mass spectrometry for both targeted and non-targeted analysis of phase II steroid metabolites in urine.
    Hernández-Mesa M; Monteau F; Le Bizec B; Dervilly-Pinel G
    Anal Chim Acta X; 2019 Mar; 1():100006. PubMed ID: 33117973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobilising ion mobility mass spectrometry for metabolomics.
    Sinclair E; Hollywood KA; Yan C; Blankley R; Breitling R; Barran P
    Analyst; 2018 Sep; 143(19):4783-4788. PubMed ID: 30209461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometric based approaches in urine metabolomics and biomarker discovery.
    Khamis MM; Adamko DJ; El-Aneed A
    Mass Spectrom Rev; 2017 Mar; 36(2):115-134. PubMed ID: 25881008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry - Tattoo pigment identification supported by trapped ion mobility spectrometry.
    Wolf C; Behrens A; Brungs C; Mende ED; Lenz M; Piechutta PC; Roblick C; Karst U
    Anal Chim Acta; 2023 Feb; 1242():340796. PubMed ID: 36657890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics.
    Meier F; Park MA; Mann M
    Mol Cell Proteomics; 2021; 20():100138. PubMed ID: 34416385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era.
    Zhou Z; Tu J; Zhu ZJ
    Curr Opin Chem Biol; 2018 Feb; 42():34-41. PubMed ID: 29136580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traveling Wave Ion Mobility Mass Spectrometry: Metabolomics Applications.
    Paglia G; Astarita G
    Methods Mol Biol; 2019; 1978():39-53. PubMed ID: 31119656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.