BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34107220)

  • 1. Neural control of the healthy pectoralis major from low-to-moderate isometric contractions.
    Lulic-Kuryllo T; Thompson CK; Jiang N; Negro F; Dickerson CR
    J Neurophysiol; 2021 Jul; 126(1):213-226. PubMed ID: 34107220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standard bipolar surface EMG estimations mischaracterize pectoralis major activity in commonly performed tasks.
    Lulic-Kuryllo T; Negro F; Jiang N; Dickerson CR
    J Electromyogr Kinesiol; 2021 Feb; 56():102509. PubMed ID: 33310606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions.
    Reece TM; Herda TJ
    J Neurophysiol; 2021 Jun; 125(6):2094-2106. PubMed ID: 33909509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor unit control properties in constant-force isometric contractions.
    de Luca CJ; Foley PJ; Erim Z
    J Neurophysiol; 1996 Sep; 76(3):1503-16. PubMed ID: 8890270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor unit discharge rate modulation during isometric contractions to failure is intensity- and modality-dependent.
    Valenčič T; Ansdell P; Brownstein CG; Spillane PM; Holobar A; Škarabot J
    J Physiol; 2024 May; 602(10):2287-2314. PubMed ID: 38619366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time isometric finger extension force estimation based on motor unit discharge information.
    Zheng Y; Hu X
    J Neural Eng; 2019 Oct; 16(6):066006. PubMed ID: 31234147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding.
    Del Vecchio A; Casolo A; Negro F; Scorcelletti M; Bazzucchi I; Enoka R; Felici F; Farina D
    J Physiol; 2019 Apr; 597(7):1873-1887. PubMed ID: 30727028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor unit firing patterns on increasing force during force and position tasks.
    Kunugi S; Holobar A; Kodera T; Toyoda H; Watanabe K
    J Neurophysiol; 2021 Nov; 126(5):1653-1659. PubMed ID: 34669517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control of matched motor units during muscle shortening and lengthening at increasing velocities.
    Oliveira AS; Negro F
    J Appl Physiol (1985); 2021 Jun; 130(6):1798-1813. PubMed ID: 33955258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of recruitment and rate coding organization in motor-unit pools.
    Fuglevand AJ; Winter DA; Patla AE
    J Neurophysiol; 1993 Dec; 70(6):2470-88. PubMed ID: 8120594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anconeus motor unit firing rates during isometric and muscle-shortening contractions comparing young and very old adults.
    Kirk EA; Gilmore KJ; Rice CL
    J Neurophysiol; 2021 Oct; 126(4):1122-1136. PubMed ID: 34495770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regional pectoralis major activation indicates functional diversity in healthy females.
    Lulic-Kuryllo T; Negro F; Jiang N; Dickerson CR
    J Biomech; 2022 Mar; 133():110966. PubMed ID: 35093733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the tendency of motor unit recruitment during steady-hold and rapid contractions using surface EMG and Turns-amplitude analysis.
    Pan LL; Yu CH; Tsai MW; Wei SH; Chou LW
    Eur J Appl Physiol; 2015 Nov; 115(11):2407-14. PubMed ID: 26202486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force direction and arm position affect contribution of clavicular and sternal parts of pectoralis major muscle during muscle strength testing.
    Lee HM
    J Hand Ther; 2019; 32(1):71-79. PubMed ID: 28943236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor unit activity in biceps brachii of left-handed humans during sustained contractions with two load types.
    Gould JR; Cleland BT; Mani D; Amiridis IG; Enoka RM
    J Neurophysiol; 2016 Sep; 116(3):1358-65. PubMed ID: 27334949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency oscillations of the neural drive to the muscle are increased with experimental muscle pain.
    Farina D; Negro F; Gizzi L; Falla D
    J Neurophysiol; 2012 Feb; 107(3):958-65. PubMed ID: 22049336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexor hallucis brevis motor unit behavior in response to moderate increases in rate of force development.
    Aeles J; Kelly LA; Cresswell AG
    PeerJ; 2023; 11():e14341. PubMed ID: 36643633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions.
    Oya T; Riek S; Cresswell AG
    J Physiol; 2009 Oct; 587(Pt 19):4737-48. PubMed ID: 19703968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine-wire recordings of flexor hallucis brevis motor units up to maximal voluntary contraction reveal a flexible, nonrigid mechanism for force control.
    Aeles J; Kelly LA; Yoshitake Y; Cresswell AG
    J Neurophysiol; 2020 May; 123(5):1766-1774. PubMed ID: 32267195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans.
    Del Vecchio A; Negro F; Holobar A; Casolo A; Folland JP; Felici F; Farina D
    J Physiol; 2019 May; 597(9):2445-2456. PubMed ID: 30768687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.