BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34107832)

  • 1. Phenyl-substituted aminomethylene-bisphosphonates inhibit human P5C reductase and show antiproliferative activity against proline-hyperproducing tumour cells.
    Forlani G; Sabbioni G; Ragno D; Petrollino D; Borgatti M
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1248-1257. PubMed ID: 34107832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of effective inhibitors of plant δ1-pyrroline-5-carboxylate reductase.
    Forlani G; Berlicki L; Duò M; Dziędzioła G; Giberti S; Bertazzini M; Kafarski P
    J Agric Food Chem; 2013 Jul; 61(28):6792-8. PubMed ID: 23790100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the structure of aminobisphosphonates to target plant P5C reductase.
    Forlani G; Occhipinti A; Berlicki L; Dziedzioła G; Wieczorek A; Kafarski P
    J Agric Food Chem; 2008 May; 56(9):3193-9. PubMed ID: 18399639
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Christensen EM; Bogner AN; Vandekeere A; Tam GS; Patel SM; Becker DF; Fendt SM; Tanner JJ
    J Biol Chem; 2020 Dec; 295(52):18316-18327. PubMed ID: 33109600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytotoxicity of aminobisphosphonates targeting both δ
    Giberti S; Bertazzini M; Liboni M; Berlicki Ł; Kafarski P; Forlani G
    Pest Manag Sci; 2017 Feb; 73(2):435-443. PubMed ID: 27103608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant P5C reductase as a new target for aminomethylenebisphosphonates.
    Forlani G; Giberti S; Berlicki L; Petrollino D; Kafarski P
    J Agric Food Chem; 2007 May; 55(11):4340-7. PubMed ID: 17474756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Δ1-pyrroline-5-carboxylate reductase as a new target for therapeutics: inhibition of the enzyme from Streptococcus pyogenes and effects in vivo.
    Forlani G; Petrollino D; Fusetti M; Romanini L; Nocek B; Joachimiak A; Berlicki L; Kafarski P
    Amino Acids; 2012 Jun; 42(6):2283-91. PubMed ID: 21744012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Proline Cycle As a Potential Cancer Therapy Target.
    Tanner JJ; Fendt SM; Becker DF
    Biochemistry; 2018 Jun; 57(25):3433-3444. PubMed ID: 29648801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate.
    Giberti S; Funck D; Forlani G
    New Phytol; 2014 May; 202(3):911-919. PubMed ID: 24467670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1.
    Christensen EM; Patel SM; Korasick DA; Campbell AC; Krause KL; Becker DF; Tanner JJ
    J Biol Chem; 2017 Apr; 292(17):7233-7243. PubMed ID: 28258219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT3 regulates cancer cell proliferation through deacetylation of PYCR1 in proline metabolism.
    Chen S; Yang X; Yu M; Wang Z; Liu B; Liu M; Liu L; Ren M; Qi H; Zou J; Vucenik I; Zhu WG; Luo J
    Neoplasia; 2019 Jul; 21(7):665-675. PubMed ID: 31108370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and kinetic characterization of PYCR3.
    Meeks KR; Tanner JJ
    Arch Biochem Biophys; 2023 Jan; 733():109468. PubMed ID: 36414121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of Pycr1 and Pycr2 in mice.
    Stum MG; Tadenev ALD; Seburn KL; Miers KE; Poon PP; McMaster CR; Robinson C; Kane C; Silva KA; Cliften PF; Sundberg JP; Reinholdt LG; John SWM; Burgess RW
    Genetics; 2021 May; 218(1):. PubMed ID: 33734376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trypanosoma cruzi synthesizes proline via a Δ1-pyrroline-5-carboxylate reductase whose activity is fine-tuned by NADPH cytosolic pools.
    Marchese L; Olavarria K; Mantilla BS; Avila CC; Souza ROO; Damasceno FS; Elias MC; Silber AM
    Biochem J; 2020 May; 477(10):1827-1845. PubMed ID: 32315030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae.
    Brandriss MC; Magasanik B
    J Bacteriol; 1980 Sep; 143(3):1403-10. PubMed ID: 6997271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Impact of a Cancer-Related Variant in Human Δ
    Daudu OI; Meeks KR; Zhang L; Seravalli J; Tanner JJ; Becker DF
    ACS Omega; 2023 Jan; 8(3):3509-3519. PubMed ID: 36713721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation.
    Laliberté G; Hellebust JA
    Plant Physiol; 1989 Nov; 91(3):917-23. PubMed ID: 16667157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible involvement of a L-delta 1-pyrroline-5-carboxylate (P5C) reductase in the synthesis of proline in Desulfovibrio desulfuricans Norway.
    Fons M; Cami B; Chippaux M
    Biochem Biophys Res Commun; 1991 Sep; 179(2):1088-94. PubMed ID: 1898390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Characterization of
    Forlani G; Sabbioni G; Ruszkowski M
    Microorganisms; 2022 Oct; 10(10):. PubMed ID: 36296354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of proline in Pseudomonas aeruginosa. Properties of gamma-glutamyl phosphate reductase and 1-pyrroline-5-carboxylate reductase.
    Krishna RV; Beilstein P; Leisinger T
    Biochem J; 1979 Jul; 181(1):223-30. PubMed ID: 114173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.