BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 34108479)

  • 1. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition.
    Obaji E; Maksimainen MM; Galera-Prat A; Lehtiö L
    Nat Commun; 2021 Jun; 12(1):3479. PubMed ID: 34108479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation.
    Suskiewicz MJ; Zobel F; Ogden TEH; Fontana P; Ariza A; Yang JC; Zhu K; Bracken L; Hawthorne WJ; Ahel D; Neuhaus D; Ahel I
    Nature; 2020 Mar; 579(7800):598-602. PubMed ID: 32028527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin.
    Bilokapic S; Suskiewicz MJ; Ahel I; Halic M
    Nature; 2020 Sep; 585(7826):609-613. PubMed ID: 32939087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for DNA break recognition by ARTD2/PARP2.
    Obaji E; Haikarainen T; Lehtiö L
    Nucleic Acids Res; 2018 Dec; 46(22):12154-12165. PubMed ID: 30321391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling.
    van Beek L; McClay É; Patel S; Schimpl M; Spagnolo L; Maia de Oliveira T
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic insight into the role of Poly(ADP-ribosyl)ation in DNA topology modulation and response to DNA damage.
    Matkarimov BT; Zharkov DO; Saparbaev MK
    Mutagenesis; 2020 Feb; 35(1):107-118. PubMed ID: 31782485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the DNA dependent activation of human ARTD2/PARP2.
    Obaji E; Haikarainen T; Lehtiö L
    Sci Rep; 2016 Oct; 6():34487. PubMed ID: 27708353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of PARP1, PARP2 and poly(ADP-ribosyl)ation to base excision repair in the nucleosomal context.
    Kutuzov MM; Belousova EA; Kurgina TA; Ukraintsev AA; Vasil'eva IA; Khodyreva SN; Lavrik OI
    Sci Rep; 2021 Mar; 11(1):4849. PubMed ID: 33649352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates.
    Sukhanova MV; Hamon L; Kutuzov MM; Joshi V; Abrakhi S; Dobra I; Curmi PA; Pastre D; Lavrik OI
    J Mol Biol; 2019 Jul; 431(15):2655-2673. PubMed ID: 31129062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The HPF1-dependent histone PARylation catalyzed by PARP2 is specifically stimulated by an incised AP site-containing BER DNA intermediate.
    Kurgina TA; Moor NA; Kutuzov MM; Lavrik OI
    DNA Repair (Amst); 2022 Dec; 120():103423. PubMed ID: 36356486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1].
    Kurgina TA; Lavrik OI
    Mol Biol (Mosk); 2023; 57(2):254-268. PubMed ID: 37000654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP2 mediates branched poly ADP-ribosylation in response to DNA damage.
    Chen Q; Kassab MA; Dantzer F; Yu X
    Nat Commun; 2018 Aug; 9(1):3233. PubMed ID: 30104678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities.
    Kurgina TA; Moor NA; Kutuzov MM; Naumenko KN; Ukraintsev AA; Lavrik OI
    Commun Biol; 2021 Nov; 4(1):1259. PubMed ID: 34732825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1.
    Gaullier G; Roberts G; Muthurajan UM; Bowerman S; Rudolph J; Mahadevan J; Jha A; Rae PS; Luger K
    PLoS One; 2020; 15(11):e0240932. PubMed ID: 33141820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging.
    Sukhanova MV; Abrakhi S; Joshi V; Pastre D; Kutuzov MM; Anarbaev RO; Curmi PA; Hamon L; Lavrik OI
    Nucleic Acids Res; 2016 Apr; 44(6):e60. PubMed ID: 26673720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine-linked PARP1 auto-modification controls PARP inhibitor response.
    Prokhorova E; Zobel F; Smith R; Zentout S; Gibbs-Seymour I; Schützenhofer K; Peters A; Groslambert J; Zorzini V; Agnew T; Brognard J; Nielsen ML; Ahel D; Huet S; Suskiewicz MJ; Ahel I
    Nat Commun; 2021 Jul; 12(1):4055. PubMed ID: 34210965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Roles of PARP2 in Assembling Protein-Protein Complexes Involved in Base Excision DNA Repair.
    Vasil'eva I; Moor N; Anarbaev R; Kutuzov M; Lavrik O
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro.
    Talhaoui I; Lebedeva NA; Zarkovic G; Saint-Pierre C; Kutuzov MM; Sukhanova MV; Matkarimov BT; Gasparutto D; Saparbaev MK; Lavrik OI; Ishchenko AA
    Nucleic Acids Res; 2016 Nov; 44(19):9279-9295. PubMed ID: 27471034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications.
    Langelier MF; Billur R; Sverzhinsky A; Black BE; Pascal JM
    Nat Commun; 2021 Nov; 12(1):6675. PubMed ID: 34795260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones.
    Sun FH; Zhao P; Zhang N; Kong LL; Wong CCL; Yun CH
    Nat Commun; 2021 Feb; 12(1):1028. PubMed ID: 33589610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.