BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34108669)

  • 1. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy.
    Zhang Z; Yang A; Chaurasiya S; Park AK; Lu J; Kim SI; Warner SG; Yuan YC; Liu Z; Han H; Von Hoff D; Fong Y; Woo Y
    Cancer Gene Ther; 2022 Jun; 29(6):722-733. PubMed ID: 34108669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Chimeric Immuno-Oncolytic Virus CF33-hNIS-antiPDL1 for the Treatment of Pancreatic Cancer.
    Woo Y; Zhang Z; Yang A; Chaurasiya S; Park AK; Lu J; Kim SI; Warner SG; Von Hoff D; Fong Y
    J Am Coll Surg; 2020 Apr; 230(4):709-717. PubMed ID: 32032721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the oncolytic virus, CF33, and its derivatives for peritoneal-directed treatment of gastric cancer peritoneal metastases.
    Yang A; Zhang Z; Chaurasiya S; Park AK; Jung A; Lu J; Kim SI; Priceman S; Fong Y; Woo Y
    J Immunother Cancer; 2023 Apr; 11(4):. PubMed ID: 37019471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Tumor Immunogenicity of the Oncolytic Virus CF33-hNIS-antiPDL1 against Ex Vivo Peritoneal Cells from Gastric Cancer Patients.
    Zhang Z; Yang A; Chaurasiya S; Park AK; Kim SI; Lu J; Valencia H; Fong Y; Woo Y
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PET imaging and treatment of pancreatic cancer peritoneal carcinomatosis after subcutaneous intratumoral administration of a novel oncolytic virus, CF33-hNIS-antiPDL1.
    Zhang Z; Yang A; Chaurasiya S; Park AK; Kim SI; Lu J; Olafsen T; Warner SG; Fong Y; Woo Y
    Mol Ther Oncolytics; 2022 Mar; 24():331-339. PubMed ID: 35118191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model.
    Chaurasiya S; Yang A; Kang S; Lu J; Kim SI; Park AK; Sivanandam V; Zhang Z; Woo Y; Warner SG; Fong Y
    Oncoimmunology; 2020; 9(1):1729300. PubMed ID: 32158622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer.
    Kajiwara Y; Tazawa H; Yamada M; Kanaya N; Fushimi T; Kikuchi S; Kuroda S; Ohara T; Noma K; Yoshida R; Umeda Y; Urata Y; Kagawa S; Fujiwara T
    Cancer Immunol Immunother; 2023 May; 72(5):1285-1300. PubMed ID: 36436021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive preclinical study supporting clinical trial of oncolytic chimeric poxvirus CF33-hNIS-anti-PD-L1 to treat breast cancer.
    Chaurasiya S; Yang A; Zhang Z; Lu J; Valencia H; Kim SI; Woo Y; Warner SG; Olafsen T; Zhao Y; Wu X; Fein S; Cheng L; Cheng M; Ede N; Fong Y
    Mol Ther Methods Clin Dev; 2022 Mar; 24():102-116. PubMed ID: 35024377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ERK Inhibition Improves Anti-PD-L1 Immune Checkpoint Blockade in Preclinical Pancreatic Ductal Adenocarcinoma.
    Henry KE; Mack KN; Nagle VL; Cornejo M; Michel AO; Fox IL; Davydova M; Dilling TR; Pillarsetty N; Lewis JS
    Mol Cancer Ther; 2021 Oct; 20(10):2026-2034. PubMed ID: 34349003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DHA-SBT-1214 Taxoid Nanoemulsion and Anti-PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model.
    Ahmad G; Mackenzie GG; Egan J; Amiji MM
    Mol Cancer Ther; 2019 Nov; 18(11):1961-1972. PubMed ID: 31439714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Oncolytic Virus to Retask CD19-Chimeric Antigen Receptor T Cells for Treatment of Pancreatic Cancer: Toward a Universal Chimeric Antigen Receptor T-Cell Strategy for Solid Tumor.
    Chen C; Park AK; Monroy I; Ren Y; Kim SI; Chaurasiya S; Priceman SJ; Fong Y
    J Am Coll Surg; 2024 Apr; 238(4):436-447. PubMed ID: 38214445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
    Mace TA; Shakya R; Pitarresi JR; Swanson B; McQuinn CW; Loftus S; Nordquist E; Cruz-Monserrate Z; Yu L; Young G; Zhong X; Zimmers TA; Ostrowski MC; Ludwig T; Bloomston M; Bekaii-Saab T; Lesinski GB
    Gut; 2018 Feb; 67(2):320-332. PubMed ID: 27797936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow Cu2MoS4 nanoparticles loaded with immune checkpoint inhibitors reshape the tumor microenvironment to enhance immunotherapy for pancreatic cancer.
    Yao Z; Qi C; Zhang F; Yao H; Wang C; Cao X; Zhao C; Wang Z; Qi M; Yao C; Wang X; Xia H
    Acta Biomater; 2024 Jan; 173():365-377. PubMed ID: 37890815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PD-L1 is a direct target of cancer-FOXP3 in pancreatic ductal adenocarcinoma (PDAC), and combined immunotherapy with antibodies against PD-L1 and CCL5 is effective in the treatment of PDAC.
    Wang X; Li X; Wei X; Jiang H; Lan C; Yang S; Wang H; Yang Y; Tian C; Xu Z; Zhang J; Hao J; Ren H
    Signal Transduct Target Ther; 2020 Apr; 5(1):38. PubMed ID: 32300119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-Econazole Enhanced PD-L1 Checkpoint Blockade for Synergistic Antitumor Immunotherapy against Pancreatic Ductal Adenocarcinoma.
    Li Q; Qin S; Tian H; Liu R; Qiao L; Liu S; Li B; Yang M; Shi J; Nice EC; Li J; Lang T; Huang C
    Small; 2023 Jun; 19(23):e2207201. PubMed ID: 36899444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer.
    Fan P; Zhao J; Meng Z; Wu H; Wang B; Wu H; Jin X
    J Exp Clin Cancer Res; 2019 Feb; 38(1):47. PubMed ID: 30709380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors.
    Zhang X; Lao M; Xu J; Duan Y; Yang H; Li M; Ying H; He L; Sun K; Guo C; Chen W; Jiang H; Zhang X; Bai X; Liang T
    J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35260434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmed Death-Ligand 1 (PD-L1) Expression Is Induced by Insulin in Pancreatic Ductal Adenocarcinoma Cells Pointing to Its Role in Immune Checkpoint Control.
    Heckl SM; Mau F; Senftleben A; Daunke T; Beckinger S; Abdullazade S; Schreiber S; Röcken C; Sebens S; Schäfer H
    Med Sci (Basel); 2021 Jun; 9(3):. PubMed ID: 34202040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oncolytic herpes simplex virus HF10 (canerpaturev) promotes accumulation of CD8
    Eissa IR; Mukoyama N; Abdelmoneim M; Naoe Y; Matsumura S; Bustos-Villalobos I; Ichinose T; Miyajima N; Morimoto D; Tanaka M; Fujimoto Y; Sone M; Kodera Y; Kasuya H
    Int J Cancer; 2021 Jul; 149(1):214-227. PubMed ID: 33687756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Syrian hamster anti-PD-L1 monoclonal antibody enables oncolytic adenoviral immunotherapy modelling in an immunocompetent virus replication permissive setting.
    Clubb JHA; Kudling TV; Girych M; Haybout L; Pakola S; Hamdan F; Cervera-Carrascon V; Hemmes A; Grönberg-Vähä-Koskela S; Santos JM; Quixabeira DCA; Basnet S; Heiniö C; Arias V; Jirovec E; Kaptan S; Havunen R; Sorsa S; Erikat A; Schwartz J; Anttila M; Aro K; Viitala T; Vattulainen I; Cerullo V; Kanerva A; Hemminki A
    Front Immunol; 2023; 14():1060540. PubMed ID: 36817448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.