These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34108981)

  • 1. Cryo-Electron Microscopy of
    Wahlgren WY; Golonka D; Westenhoff S; Möglich A
    Front Plant Sci; 2021; 12():663751. PubMed ID: 34108981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal Transduction in an Enzymatic Photoreceptor Revealed by Cryo-Electron Microscopy.
    Malla TN; Hernandez C; Menendez D; Bizhga D; Mendez JH; Muniyappan S; Schwander P; Stojković EA; Schmidt M
    bioRxiv; 2023 Nov; ():. PubMed ID: 37986774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion.
    Burgie ES; Wang T; Bussell AN; Walker JM; Li H; Vierstra RD
    J Biol Chem; 2014 Aug; 289(35):24573-87. PubMed ID: 25006244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism.
    Otero LH; Klinke S; Rinaldi J; Velázquez-Escobar F; Mroginski MA; Fernández López M; Malamud F; Vojnov AA; Hildebrandt P; Goldbaum FA; Bonomi HR
    J Mol Biol; 2016 Sep; 428(19):3702-20. PubMed ID: 27107635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to form the Pfr signalling-competent state.
    Heyes DJ; Khara B; Sakuma M; Hardman SJ; O'Cualain R; Rigby SE; Scrutton NS
    PLoS One; 2012; 7(12):e52418. PubMed ID: 23300666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs.
    Anders K; Gutt A; Gärtner W; Essen LO
    J Biol Chem; 2014 Sep; 289(37):25590-600. PubMed ID: 25012656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quaternary organization of a phytochrome dimer as revealed by cryoelectron microscopy.
    Li H; Zhang J; Vierstra RD; Li H
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10872-7. PubMed ID: 20534495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals.
    Chen M; Tao Y; Lim J; Shaw A; Chory J
    Curr Biol; 2005 Apr; 15(7):637-42. PubMed ID: 15823535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity.
    Jeong AR; Lee SS; Han YJ; Shin AY; Baek A; Ahn T; Kim MG; Kim YS; Lee KW; Nagatani A; Kim JI
    Plant Physiol; 2016 Aug; 171(4):2826-40. PubMed ID: 27325667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the photoconversion of a phytochrome to the activated Pfr form.
    Ulijasz AT; Cornilescu G; Cornilescu CC; Zhang J; Rivera M; Markley JL; Vierstra RD
    Nature; 2010 Jan; 463(7278):250-4. PubMed ID: 20075921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.
    Burgie ES; Bussell AN; Walker JM; Dubiel K; Vierstra RD
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10179-84. PubMed ID: 24982198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome.
    Slavov C; Fischer T; Barnoy A; Shin H; Rao AG; Wiebeler C; Zeng X; Sun Y; Xu Q; Gutt A; Zhao KH; Gärtner W; Yang X; Schapiro I; Wachtveitl J
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16356-16362. PubMed ID: 32591422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome.
    Takala H; Lehtivuori HK; Berntsson O; Hughes A; Nanekar R; Niebling S; Panman M; Henry L; Menzel A; Westenhoff S; Ihalainen JA
    J Biol Chem; 2018 May; 293(21):8161-8172. PubMed ID: 29622676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores.
    Inomata K; Khawn H; Chen LY; Kinoshita H; Zienicke B; Molina I; Lamparter T
    Biochemistry; 2009 Mar; 48(12):2817-27. PubMed ID: 19253981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion.
    Ulijasz AT; Cornilescu G; von Stetten D; Kaminski S; Mroginski MA; Zhang J; Bhaya D; Hildebrandt P; Vierstra RD
    J Biol Chem; 2008 Jul; 283(30):21251-66. PubMed ID: 18480055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual spectral properties of bacteriophytochrome Agp2 result from a deprotonation of the chromophore in the red-absorbing form Pr.
    Zienicke B; Molina I; Glenz R; Singer P; Ehmer D; Escobar FV; Hildebrandt P; Diller R; Lamparter T
    J Biol Chem; 2013 Nov; 288(44):31738-51. PubMed ID: 24036118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the Pr-Pfr long-range signaling mechanism of a full-length bacterial phytochrome at the atomic level.
    Otero LH; Foscaldi S; Antelo GT; Rosano GL; Sirigu S; Klinke S; Defelipe LA; Sánchez-Lamas M; Battocchio G; Conforte V; Vojnov AA; Chavas LMG; Goldbaum FA; Mroginski MA; Rinaldi J; Bonomi HR
    Sci Adv; 2021 Nov; 7(48):eabh1097. PubMed ID: 34818032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling.
    Anders K; Daminelli-Widany G; Mroginski MA; von Stetten D; Essen LO
    J Biol Chem; 2013 Dec; 288(50):35714-25. PubMed ID: 24174528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of synthetic locked phycocyanobilin derivatives with phytochrome in vitro and in vivo in Ceratodon purpureus and Arabidopsis.
    Yang R; Nishiyama K; Kamiya A; Ukaji Y; Inomata K; Lamparter T
    Plant Cell; 2012 May; 24(5):1936-51. PubMed ID: 22582099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.