These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34109316)

  • 1. An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia.
    Bajaj J; Hamilton M; Shima Y; Chambers K; Spinler K; Van Nostrand EL; Yee BA; Blue SM; Chen M; Rizzeri D; Chuah C; Oehler VG; Broome HE; Sasik R; Scott-Browne J; Rao A; Yeo GW; Reya T
    Nat Cancer; 2020 Apr; 1(4):410-422. PubMed ID: 34109316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo genome-wide CRISPR screening in murine acute myeloid leukemia uncovers microenvironmental dependencies.
    Mercier FE; Shi J; Sykes DB; Oki T; Jankovic M; Man CH; Kfoury YS; Miller E; He S; Zhu A; Vasic R; Doench J; Orthwein A; Michor F; Scadden DT
    Blood Adv; 2022 Sep; 6(17):5072-5084. PubMed ID: 35793392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stem cell reporter based platform to identify and target drug resistant stem cells in myeloid leukemia.
    Spinler K; Bajaj J; Ito T; Zimdahl B; Hamilton M; Ahmadi A; Koechlein CS; Lytle N; Kwon HY; Anower-E-Khuda F; Sun H; Blevins A; Weeks J; Kritzik M; Karlseder J; Ginsberg MH; Park PW; Esko JD; Reya T
    Nat Commun; 2020 Nov; 11(1):5998. PubMed ID: 33243988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling therapeutic targets in acute myeloid leukemia through multiplexed genome editing CRISPR screening.
    Tian Z; Octaviani S; Huang J
    Expert Opin Ther Targets; 2023; 27(12):1173-1176. PubMed ID: 38069633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes.
    Furic L; Maher-Laporte M; DesGroseillers L
    RNA; 2008 Feb; 14(2):324-35. PubMed ID: 18094122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Exploration of novel therapeutic targets in acute myeloid leukemia via genome-wide CRISPR screening].
    Yamauchi T
    Rinsho Ketsueki; 2019; 60(7):810-817. PubMed ID: 31391371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia.
    Tzelepis K; Koike-Yusa H; De Braekeleer E; Li Y; Metzakopian E; Dovey OM; Mupo A; Grinkevich V; Li M; Mazan M; Gozdecka M; Ohnishi S; Cooper J; Patel M; McKerrell T; Chen B; Domingues AF; Gallipoli P; Teichmann S; Ponstingl H; McDermott U; Saez-Rodriguez J; Huntly BJP; Iorio F; Pina C; Vassiliou GS; Yusa K
    Cell Rep; 2016 Oct; 17(4):1193-1205. PubMed ID: 27760321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staufen2 deficiency leads to impaired response to novelty in mice.
    Popper B; Demleitner A; Bolivar VJ; Kusek G; Snyder-Keller A; Schieweck R; Temple S; Kiebler MA
    Neurobiol Learn Mem; 2018 Apr; 150():107-115. PubMed ID: 29496644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation.
    Wang E; Zhou H; Nadorp B; Cayanan G; Chen X; Yeaton AH; Nomikou S; Witkowski MT; Narang S; Kloetgen A; Thandapani P; Ravn-Boess N; Tsirigos A; Aifantis I
    Cell Stem Cell; 2021 Apr; 28(4):718-731.e6. PubMed ID: 33450187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STAU2 protein level is controlled by caspases and the CHK1 pathway and regulates cell cycle progression in the non-transformed hTERT-RPE1 cells.
    Condé L; Gonzalez Quesada Y; Bonnet-Magnaval F; Beaujois R; DesGroseillers L
    BMC Mol Cell Biol; 2021 Mar; 22(1):16. PubMed ID: 33663378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells.
    Lee DH; Kang SH; Choi DS; Ko M; Choi E; Ahn H; Min H; Oh SJ; Lee MS; Park Y; Jin HS
    Cancer Lett; 2021 Jul; 510():37-47. PubMed ID: 33872695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency CRISPR induction of t(9;11) chromosomal translocations and acute leukemias in human blood stem cells.
    Jeong J; Jager A; Domizi P; Pavel-Dinu M; Gojenola L; Iwasaki M; Wei MC; Pan F; Zehnder JL; Porteus MH; Davis KL; Cleary ML
    Blood Adv; 2019 Oct; 3(19):2825-2835. PubMed ID: 31582391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vivo Screening Unveils Pervasive RNA-Binding Protein Dependencies in Leukemic Stem Cells and Identifies ELAVL1 as a Therapeutic Target.
    Vujovic A; de Rooij L; Chahi AK; Chen HT; Yee BA; Loganathan SK; Liu L; Chan DCH; Tajik A; Tsao E; Moreira S; Joshi P; Xu J; Wong N; Balde Z; Jahangiri S; Zandi S; Aigner S; Dick JE; Minden MD; Schramek D; Yeo GW; Hope KJ
    Blood Cancer Discov; 2023 May; 4(3):180-207. PubMed ID: 36763002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats.
    Berger SM; Fernández-Lamo I; Schönig K; Fernández Moya SM; Ehses J; Schieweck R; Clementi S; Enkel T; Grothe S; von Bohlen Und Halbach O; Segura I; Delgado-García JM; Gruart A; Kiebler MA; Bartsch D
    Genome Biol; 2017 Nov; 18(1):222. PubMed ID: 29149906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative splicing of Staufen2 creates the nuclear export signal for CRM1 (Exportin 1).
    Miki T; Yoneda Y
    J Biol Chem; 2004 Nov; 279(46):47473-9. PubMed ID: 15364930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Identification of the RNA-Binding Protein STAU2 as a Key Regulator of Pancreatic Adenocarcinoma.
    Wang X; Kuang W; Ding J; Li J; Ji M; Chen W; Shen H; Shi Z; Wang D; Wang L; Yang P
    Cancers (Basel); 2022 Jul; 14(15):. PubMed ID: 35892886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting an RNA-Binding Protein Network in Acute Myeloid Leukemia.
    Wang E; Lu SX; Pastore A; Chen X; Imig J; Chun-Wei Lee S; Hockemeyer K; Ghebrechristos YE; Yoshimi A; Inoue D; Ki M; Cho H; Bitner L; Kloetgen A; Lin KT; Uehara T; Owa T; Tibes R; Krainer AR; Abdel-Wahab O; Aifantis I
    Cancer Cell; 2019 Mar; 35(3):369-384.e7. PubMed ID: 30799057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts.
    Valletta S; Dolatshad H; Bartenstein M; Yip BH; Bello E; Gordon S; Yu Y; Shaw J; Roy S; Scifo L; Schuh A; Pellagatti A; Fulga TA; Verma A; Boultwood J
    Oncotarget; 2015 Dec; 6(42):44061-71. PubMed ID: 26623729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles.
    Duchaîne TF; Hemraj I; Furic L; Deitinghoff A; Kiebler MA; DesGroseillers L
    J Cell Sci; 2002 Aug; 115(Pt 16):3285-95. PubMed ID: 12140260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of CRISPR targeting for proliferation and cytarabine resistance control genes in the acute myeloid leukemia cell line MOLM-13.
    Prajapati SC; Dunham N; Fan H; Garrett-Bakelman FE
    Biotechniques; 2022 Mar; 72(3):81-84. PubMed ID: 35119307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.