These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34109338)

  • 1. High-throughput microfluidic compressibility cytometry using multi-tilted-angle surface acoustic wave.
    Wu Y; Stewart AG; Lee PVS
    Lab Chip; 2021 Jul; 21(14):2812-2824. PubMed ID: 34109338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enhanced tilted-angle acoustic tweezer for mechanical phenotyping of cancer cells.
    Wang H; Boardman J; Zhang X; Sun C; Cai M; Wei J; Dong Z; Feng M; Liang D; Hu S; Qian Y; Dong S; Fu Y; Torun H; Clayton A; Wu Z; Xie Z; Yang X
    Anal Chim Acta; 2023 May; 1255():341120. PubMed ID: 37032048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells.
    Yang T; Bragheri F; Nava G; Chiodi I; Mondello C; Osellame R; Berg-Sørensen K; Cristiani I; Minzioni P
    Sci Rep; 2016 Apr; 6():23946. PubMed ID: 27040456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip cell mechanophenotyping using phase modulated surface acoustic wave.
    Wu Y; Stewart AG; Lee PVS
    Biomicrofluidics; 2019 Mar; 13(2):024107. PubMed ID: 31065306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-Free Multivariate Biophysical Phenotyping-Activated Acoustic Sorting at the Single-Cell Level.
    Li P; Ai Y
    Anal Chem; 2021 Mar; 93(8):4108-4117. PubMed ID: 33599494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves.
    Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M
    Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.
    Yin D; Xu G; Wang M; Shen M; Xu T; Zhu X; Shi X
    Colloids Surf B Biointerfaces; 2017 Sep; 157():347-354. PubMed ID: 28622655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of Particle/Cell Based on Compressibility in a Divergent Microchannel by Surface Acoustic Wave.
    Xue S; Xu Q; Xu Z; Zhang X; Zhang H; Zhang X; He F; Chen Y; Xue Y; Hao P
    Anal Chem; 2023 Mar; 95(9):4282-4290. PubMed ID: 36815437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous-flow acoustofluidic cytometer for single-cell mechanotyping.
    Wang H; Liu Z; Shin DM; Chen ZG; Cho Y; Kim YJ; Han A
    Lab Chip; 2019 Jan; 19(3):387-393. PubMed ID: 30648172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustofluidic interferometric device for rapid single-cell physical phenotyping.
    Mejía Morales J; Glynne-Jones P; Vassalli M; Lippi GL
    Eur Biophys J; 2022 Mar; 51(2):185-191. PubMed ID: 35018482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single stream inertial focusing in a straight microchannel.
    Wang X; Zandi M; Ho CC; Kaval N; Papautsky I
    Lab Chip; 2015 Apr; 15(8):1812-21. PubMed ID: 25761900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous acoustic and photoacoustic microfluidic flow cytometry for label-free analysis.
    Gnyawali V; Strohm EM; Wang JZ; Tsai SSH; Kolios MC
    Sci Rep; 2019 Feb; 9(1):1585. PubMed ID: 30733497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic Compressibility of Caenorhabditis elegans.
    Baasch T; Reichert P; Lakämper S; Vertti-Quintero N; Hack G; Casadevall I Solvas X; deMello A; Gunawan R; Dual J
    Biophys J; 2018 Nov; 115(9):1817-1825. PubMed ID: 30314654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.