These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tracking of cutaneous vascular structural changes post-UV irradiation using optical coherence tomography angiography. Ninomiya M; Hara Y; Kubo Y; Yamashita T; Katagiri C Photodermatol Photoimmunol Photomed; 2020 May; 36(3):226-232. PubMed ID: 32107789 [TBL] [Abstract][Full Text] [Related]
3. Acute skin alterations following ultraviolet radiation investigated by optical coherence tomography and histology. Gambichler T; Boms S; Stücker M; Moussa G; Kreuter A; Sand M; Sand D; Altmeyer P; Hoffmann K Arch Dermatol Res; 2005 Nov; 297(5):218-25. PubMed ID: 16215762 [TBL] [Abstract][Full Text] [Related]
4. UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study. Gambichler T; Künzlberger B; Paech V; Kreuter A; Boms S; Bader A; Moussa G; Sand M; Altmeyer P; Hoffmann K Clin Exp Dermatol; 2005 Jan; 30(1):79-82. PubMed ID: 15663511 [TBL] [Abstract][Full Text] [Related]
5. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study. Boone MA; Suppa M; Marneffe A; Miyamoto M; Jemec GB; Del Marmol V Arch Dermatol Res; 2015 Oct; 307(8):705-20. PubMed ID: 26066511 [TBL] [Abstract][Full Text] [Related]
6. In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin. Liu G; Jia W; Nelson JS; Chen Z Lasers Surg Med; 2013 Dec; 45(10):628-32. PubMed ID: 24155140 [TBL] [Abstract][Full Text] [Related]
7. Assessing changes in facial skin quality using noninvasive in vivo clinical skin imaging techniques after use of a topical retinoid product in subjects with moderate-to-severe photodamage. Goberdhan LT; Pellacani G; Ardigo M; Schneider K; Makino ET; Mehta RC Skin Res Technol; 2022 Jul; 28(4):604-613. PubMed ID: 35691012 [TBL] [Abstract][Full Text] [Related]
9. The use of optical coherence tomography for skin evaluation in healthy rats. Szczepanik M; Balicki I; Śmiech A; Szadkowski M; Gołyński M; Osęka M; Zwolska J Vet Dermatol; 2022 Aug; 33(4):296-e69. PubMed ID: 35635296 [TBL] [Abstract][Full Text] [Related]
10. Using optical coherence tomography for the longitudinal non-invasive evaluation of epidermal thickness in a murine model of chronic skin inflammation. Silver R; Helms A; Fu W; Wang H; Diaconu D; Loyd CM; Rollins AM; Ward NL Skin Res Technol; 2012 May; 18(2):225-31. PubMed ID: 22092854 [TBL] [Abstract][Full Text] [Related]
11. Epidermal thickness assessed by optical coherence tomography and routine histology: preliminary results of method comparison. Gambichler T; Boms S; Stücker M; Kreuter A; Moussa G; Sand M; Altmeyer P; Hoffmann K J Eur Acad Dermatol Venereol; 2006 Aug; 20(7):791-5. PubMed ID: 16898899 [TBL] [Abstract][Full Text] [Related]
13. Real-time three-dimensional imaging of epidermal splitting and removal by high-definition optical coherence tomography. Boone M; Draye JP; Verween G; Pirnay JP; Verbeken G; De Vos D; Rose T; Jennes S; Jemec GB; Del Marmol V Exp Dermatol; 2014 Oct; 23(10):725-30. PubMed ID: 25047067 [TBL] [Abstract][Full Text] [Related]
14. The role and safety of UVA and UVB in UV-induced skin erythema. Yang JW; Fan GB; Tan F; Kong HM; Liu Q; Zou Y; Tan YM Front Med (Lausanne); 2023; 10():1163697. PubMed ID: 37441686 [TBL] [Abstract][Full Text] [Related]
15. Assessing the impact of aging and blood pressure on dermal microvasculature by reactive hyperemia optical coherence tomography angiography. Wang-Evers M; Casper MJ; Glahn J; Luo T; Doyle AE; Karasik D; Kim AC; Phothong W; Nathan NR; Heesakker T; Kositratna G; Manstein D Sci Rep; 2021 Jun; 11(1):13411. PubMed ID: 34183707 [TBL] [Abstract][Full Text] [Related]
16. Evaluation and characterization of facial skin aging using optical coherence tomography. Vingan NR; Parsa S; Barillas J; Culver A; Kenkel JM Lasers Surg Med; 2023 Jan; 55(1):22-34. PubMed ID: 36208115 [TBL] [Abstract][Full Text] [Related]
17. In vivo assessment of early effects of diamond-tipped microdermabrasion through the lens of line-field confocal optical coherence tomography. Razi S; Truong TM; Khan S; Sanabria B; Rao B J Cosmet Dermatol; 2024 Aug; 23(8):2663-2672. PubMed ID: 38545815 [TBL] [Abstract][Full Text] [Related]
18. In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography. Monnier J; Tognetti L; Miyamoto M; Suppa M; Cinotti E; Fontaine M; Perez J; Orte Cano C; Yélamos O; Puig S; Dubois A; Rubegni P; Del Marmol V; Malvehy J; Perrot JL J Eur Acad Dermatol Venereol; 2020 Dec; 34(12):2914-2921. PubMed ID: 32786124 [TBL] [Abstract][Full Text] [Related]
19. Depth-resolved investigation of multiple optical properties and wrinkle morphology in eye-corner areas with multi-contrast Jones matrix optical coherence tomography. Yamazaki K; Li E; Miyazawa A; Kobayashi M; Sayo T; Makita S; Takahashi Y; Yasuno Y; Sakai S Skin Res Technol; 2021 May; 27(3):435-443. PubMed ID: 33111404 [TBL] [Abstract][Full Text] [Related]