These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34110037)

  • 1. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination.
    Hammernik K; Schlemper J; Qin C; Duan J; Summers RM; Rueckert D
    Magn Reson Med; 2021 Oct; 86(4):1859-1872. PubMed ID: 34110037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
    Yaman B; Hosseini SAH; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    Magn Reson Med; 2020 Dec; 84(6):3172-3191. PubMed ID: 32614100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and Clinical Evaluation of the Robustness of Open-source Networks for Parallel MR Imaging Reconstruction.
    Fujita N; Yokosawa S; Shirai T; Terada Y
    Magn Reson Med Sci; 2024 Oct; 23(4):460-478. PubMed ID: 37518672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction.
    Qin C; Duan J; Hammernik K; Schlemper J; Küstner T; Botnar R; Prieto C; Price AN; Hajnal JV; Rueckert D
    Magn Reson Med; 2021 Dec; 86(6):3274-3291. PubMed ID: 34254355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A k-space-to-image reconstruction network for MRI using recurrent neural network.
    Oh C; Kim D; Chung JY; Han Y; Park H
    Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning a preconditioner to accelerate compressed sensing reconstructions in MRI.
    Koolstra K; Remis R
    Magn Reson Med; 2022 Apr; 87(4):2063-2073. PubMed ID: 34752655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction.
    Yan Y; Yang T; Zhao X; Jiao C; Yang A; Miao J
    Comput Biol Med; 2023 Dec; 167():107619. PubMed ID: 37925909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples.
    Dawood P; Breuer F; Stebani J; Burd P; Homolya I; Oberberger J; Jakob PM; Blaimer M
    Magn Reson Med; 2023 Feb; 89(2):812-827. PubMed ID: 36226661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated submillimeter wave-encoded magnetic resonance imaging via deep untrained neural network.
    Liu C; Cui ZX; Jia S; Cheng J; Cao C; Guo Y; Zhu Y; Liang D; Wang H
    Med Phys; 2023 Dec; 50(12):7684-7699. PubMed ID: 37073772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning.
    Zhang C; Moeller S; Demirel OB; Uğurbil K; Akçakaya M
    Neuroimage; 2022 Aug; 256():119248. PubMed ID: 35487456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-domain faster Fourier convolution based network for MR image reconstruction.
    Liu X; Pang Y; Liu Y; Jin R; Sun Y; Liu Y; Xiao J
    Comput Biol Med; 2024 Jul; 177():108603. PubMed ID: 38781646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization.
    Arvinte M; Vishwanath S; Tewfik AH; Tamir JI
    Med Image Comput Comput Assist Interv; 2021; 12906():350-360. PubMed ID: 35059693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms.
    Hosseini SAH; Yaman B; Moeller S; Hong M; Akçakaya M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1280-1291. PubMed ID: 33747334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
    Hosseini SAH; Zhang C; Weingärtner S; Moeller S; Stuber M; Ugurbil K; Akçakaya M
    PLoS One; 2020; 15(2):e0229418. PubMed ID: 32084235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise2Recon: Enabling SNR-robust MRI reconstruction with semi-supervised and self-supervised learning.
    Desai AD; Ozturkler BM; Sandino CM; Boutin R; Willis M; Vasanawala S; Hargreaves BA; Ré C; Pauly JM; Chaudhari AS
    Magn Reson Med; 2023 Nov; 90(5):2052-2070. PubMed ID: 37427449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.