BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34110037)

  • 1. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination.
    Hammernik K; Schlemper J; Qin C; Duan J; Summers RM; Rueckert D
    Magn Reson Med; 2021 Oct; 86(4):1859-1872. PubMed ID: 34110037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-supervised learning of physics-guided reconstruction neural networks without fully sampled reference data.
    Yaman B; Hosseini SAH; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    Magn Reson Med; 2020 Dec; 84(6):3172-3191. PubMed ID: 32614100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction.
    Qin C; Duan J; Hammernik K; Schlemper J; Küstner T; Botnar R; Prieto C; Price AN; Hajnal JV; Rueckert D
    Magn Reson Med; 2021 Dec; 86(6):3274-3291. PubMed ID: 34254355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A k-space-to-image reconstruction network for MRI using recurrent neural network.
    Oh C; Kim D; Chung JY; Han Y; Park H
    Med Phys; 2021 Jan; 48(1):193-203. PubMed ID: 33128235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning a preconditioner to accelerate compressed sensing reconstructions in MRI.
    Koolstra K; Remis R
    Magn Reson Med; 2022 Apr; 87(4):2063-2073. PubMed ID: 34752655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction.
    Yan Y; Yang T; Zhao X; Jiao C; Yang A; Miao J
    Comput Biol Med; 2023 Dec; 167():107619. PubMed ID: 37925909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples.
    Dawood P; Breuer F; Stebani J; Burd P; Homolya I; Oberberger J; Jakob PM; Blaimer M
    Magn Reson Med; 2023 Feb; 89(2):812-827. PubMed ID: 36226661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical and Clinical Evaluation of the Robustness of Open-source Networks for Parallel MR Imaging Reconstruction.
    Fujita N; Yokosawa S; Shirai T; Terada Y
    Magn Reson Med Sci; 2023 Jul; ():. PubMed ID: 37518672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation on the generalization of a learned convolutional neural network for MRI reconstruction.
    Huang J; Wang S; Zhou G; Hu W; Yu G
    Magn Reson Imaging; 2022 Apr; 87():38-46. PubMed ID: 34968699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerated submillimeter wave-encoded magnetic resonance imaging via deep untrained neural network.
    Liu C; Cui ZX; Jia S; Cheng J; Cao C; Guo Y; Zhu Y; Liang D; Wang H
    Med Phys; 2023 Dec; 50(12):7684-7699. PubMed ID: 37073772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning.
    Zhang C; Moeller S; Demirel OB; Uğurbil K; Akçakaya M
    Neuroimage; 2022 Aug; 256():119248. PubMed ID: 35487456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-domain faster Fourier convolution based network for MR image reconstruction.
    Liu X; Pang Y; Liu Y; Jin R; Sun Y; Liu Y; Xiao J
    Comput Biol Med; 2024 Jul; 177():108603. PubMed ID: 38781646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization.
    Arvinte M; Vishwanath S; Tewfik AH; Tamir JI
    Med Image Comput Comput Assist Interv; 2021; 12906():350-360. PubMed ID: 35059693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dense Recurrent Neural Networks for Accelerated MRI: History-Cognizant Unrolling of Optimization Algorithms.
    Hosseini SAH; Yaman B; Moeller S; Hong M; Akçakaya M
    IEEE J Sel Top Signal Process; 2020 Oct; 14(6):1280-1291. PubMed ID: 33747334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
    Hosseini SAH; Zhang C; Weingärtner S; Moeller S; Stuber M; Ugurbil K; Akçakaya M
    PLoS One; 2020; 15(2):e0229418. PubMed ID: 32084235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise2Recon: Enabling SNR-robust MRI reconstruction with semi-supervised and self-supervised learning.
    Desai AD; Ozturkler BM; Sandino CM; Boutin R; Willis M; Vasanawala S; Hargreaves BA; Ré C; Pauly JM; Chaudhari AS
    Magn Reson Med; 2023 Nov; 90(5):2052-2070. PubMed ID: 37427449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.