These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34110064)

  • 21. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism.
    Bever JD; Richardson SC; Lawrence BM; Holmes J; Watson M
    Ecol Lett; 2009 Jan; 12(1):13-21. PubMed ID: 19019195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilizing mechanisms in a legume-rhizobium mutualism.
    Heath KD; Tiffin P
    Evolution; 2009 Mar; 63(3):652-62. PubMed ID: 19087187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus.
    Suzaki T; Takeda N; Nishida H; Hoshino M; Ito M; Misawa F; Handa Y; Miura K; Kawaguchi M
    PLoS Genet; 2019 Jan; 15(1):e1007865. PubMed ID: 30605473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Negotiating mutualism: A locus for exploitation by rhizobia has a broad effect size distribution and context-dependent effects on legume hosts.
    Wendlandt CE; Roberts M; Nguyen KT; Graham ML; Lopez Z; Helliwell EE; Friesen ML; Griffitts JS; Price P; Porter SS
    J Evol Biol; 2022 Jun; 35(6):844-854. PubMed ID: 35506571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life histories of symbiotic rhizobia and mycorrhizal fungi.
    Denison RF; Kiers ET
    Curr Biol; 2011 Sep; 21(18):R775-85. PubMed ID: 21959168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutualism and adaptive divergence: co-invasion of a heterogeneous grassland by an exotic legume-rhizobium symbiosis.
    Porter SS; Stanton ML; Rice KJ
    PLoS One; 2011; 6(12):e27935. PubMed ID: 22174755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant invasions--the role of mutualisms.
    Richardson DM; Allsopp N; D'Antonio CM; Milton SJ; Rejmánek M
    Biol Rev Camb Philos Soc; 2000 Feb; 75(1):65-93. PubMed ID: 10740893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interspecific selection in a diverse mycorrhizal symbiosis.
    Rúa MA; Hoeksema JD
    Sci Rep; 2024 May; 14(1):12151. PubMed ID: 38802437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic conflict with a parasitic nematode disrupts the legume-rhizobia mutualism.
    Wood CW; Pilkington BL; Vaidya P; Biel C; Stinchcombe JR
    Evol Lett; 2018 Jun; 2(3):233-245. PubMed ID: 30283679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unfair trade underground revealed by integrating data with Nash bargaining models.
    Clark TJ; Friel CA; Grman E; Friesen ML; Shachar-Hill Y
    New Phytol; 2019 May; 222(3):1325-1337. PubMed ID: 30671951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics.
    Bravo A; York T; Pumplin N; Mueller LA; Harrison MJ
    Nat Plants; 2016 Jan; 2():15208. PubMed ID: 27249190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyploid plants obtain greater fitness benefits from a nutrient acquisition mutualism.
    Forrester NJ; Rebolleda-Gómez M; Sachs JL; Ashman TL
    New Phytol; 2020 Aug; 227(3):944-954. PubMed ID: 32248526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An emerging view of coevolution in the legume-rhizobium mutualism.
    Carlson C; Frederickson ME
    Mol Ecol; 2023 Jul; 32(14):3793-3797. PubMed ID: 37350376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants.
    Burghardt LT
    New Phytol; 2020 Oct; 228(1):28-34. PubMed ID: 31276218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection for cheating across disparate environments in the legume-rhizobium mutualism.
    Porter SS; Simms EL
    Ecol Lett; 2014 Sep; 17(9):1121-9. PubMed ID: 25039752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Medicago truncatula proteomics.
    Colditz F; Braun HP
    J Proteomics; 2010 Sep; 73(10):1974-85. PubMed ID: 20621211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism using mathematical modeling.
    Moyano G; Marco D; Knopoff D; Torres G; Turner C
    Math Biosci; 2017 Oct; 292():30-35. PubMed ID: 28711576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis.
    Wang X; Feng H; Wang Y; Wang M; Xie X; Chang H; Wang L; Qu J; Sun K; He W; Wang C; Dai C; Chu Z; Tian C; Yu N; Zhang X; Liu H; Wang E
    Mol Plant; 2021 Mar; 14(3):503-516. PubMed ID: 33309942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants.
    Fellbaum CR; Mensah JA; Cloos AJ; Strahan GE; Pfeffer PE; Kiers ET; Bücking H
    New Phytol; 2014 Jul; 203(2):646-656. PubMed ID: 24787049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A symbiotic SNARE protein generated by alternative termination of transcription.
    Pan H; Oztas O; Zhang X; Wu X; Stonoha C; Wang E; Wang B; Wang D
    Nat Plants; 2016 Jan; 2():15197. PubMed ID: 27249189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.