BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 34110283)

  • 21. The Immune Adaptor SLP-76 Binds to SUMO-RANGAP1 at Nuclear Pore Complex Filaments to Regulate Nuclear Import of Transcription Factors in T Cells.
    Liu H; Schneider H; Recino A; Richardson C; Goldberg MW; Rudd CE
    Mol Cell; 2015 Sep; 59(5):840-9. PubMed ID: 26321253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies.
    Saitoh N; Uchimura Y; Tachibana T; Sugahara S; Saitoh H; Nakao M
    Exp Cell Res; 2006 May; 312(8):1418-30. PubMed ID: 16688858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2.
    Mahajan R; Delphin C; Guan T; Gerace L; Melchior F
    Cell; 1997 Jan; 88(1):97-107. PubMed ID: 9019411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles.
    Joseph J; Tan SH; Karpova TS; McNally JG; Dasso M
    J Cell Biol; 2002 Feb; 156(4):595-602. PubMed ID: 11854305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins.
    Song J; Durrin LK; Wilkinson TA; Krontiris TG; Chen Y
    Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14373-8. PubMed ID: 15388847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex.
    Matunis MJ; Wu J; Blobel G
    J Cell Biol; 1998 Feb; 140(3):499-509. PubMed ID: 9456312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importin-β and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function.
    Gilistro E; de Turris V; Damizia M; Verrico A; Moroni S; De Santis R; Rosa A; Lavia P
    J Cell Sci; 2017 Aug; 130(15):2564-2578. PubMed ID: 28600321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection.
    Tatham MH; Kim S; Jaffray E; Song J; Chen Y; Hay RT
    Nat Struct Mol Biol; 2005 Jan; 12(1):67-74. PubMed ID: 15608651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1.
    Bernier-Villamor V; Sampson DA; Matunis MJ; Lima CD
    Cell; 2002 Feb; 108(3):345-56. PubMed ID: 11853669
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-frame fusion of SUMO1 enhances βarrestin2's association with activated GPCRs as well as with nuclear pore complexes.
    Nagi K; Kaur S; Bai Y; Shenoy SK
    Cell Signal; 2020 Nov; 75():109759. PubMed ID: 32860951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1.
    Macauley MS; Errington WJ; Okon M; Schärpf M; Mackereth CD; Schulman BA; McIntosh LP
    J Biol Chem; 2004 Nov; 279(47):49131-7. PubMed ID: 15355965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new clue at the nuclear pore: RanBP2 is an E3 enzyme for SUMO1.
    Azuma Y; Dasso M
    Dev Cell; 2002 Feb; 2(2):130-1. PubMed ID: 11832237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleolar and spindle-associated protein 1 (NUSAP1) interacts with a SUMO E3 ligase complex during chromosome segregation.
    Mills CA; Suzuki A; Arceci A; Mo JY; Duncan A; Salmon ED; Emanuele MJ
    J Biol Chem; 2017 Oct; 292(42):17178-17189. PubMed ID: 28900032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Cellular Distribution of RanGAP1 Is Regulated by CRM1-Mediated Nuclear Export in Mammalian Cells.
    Cha K; Sen P; Raghunayakula S; Zhang XD
    PLoS One; 2015; 10(10):e0141309. PubMed ID: 26506250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sumoylation of human argonaute 2 at lysine-402 regulates its stability.
    Sahin U; Lapaquette P; Andrieux A; Faure G; Dejean A
    PLoS One; 2014; 9(7):e102957. PubMed ID: 25036361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability.
    Hamada M; Haeger A; Jeganathan KB; van Ree JH; Malureanu L; Wälde S; Joseph J; Kehlenbach RH; van Deursen JM
    J Cell Biol; 2011 Aug; 194(4):597-612. PubMed ID: 21859863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RanBP2 associates with Ubc9p and a modified form of RanGAP1.
    Saitoh H; Pu R; Cavenagh M; Dasso M
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3736-41. PubMed ID: 9108047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association of RanGAP to nuclear pore complex component, RanBP2/Nup358, is required for pupal development in Drosophila.
    Chen S; Lyanguzova M; Kaufhold R; Plevock Haase KM; Lee H; Arnaoutov A; Dasso M
    Cell Rep; 2021 Dec; 37(13):110151. PubMed ID: 34965423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The nucleoporin Nup358/RanBP2 promotes nuclear import in a cargo- and transport receptor-specific manner.
    Wälde S; Thakar K; Hutten S; Spillner C; Nath A; Rothbauer U; Wiemann S; Kehlenbach RH
    Traffic; 2012 Feb; 13(2):218-33. PubMed ID: 21995724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The nucleoporin RanBP2 tethers the cAMP effector Epac1 and inhibits its catalytic activity.
    Gloerich M; Vliem MJ; Prummel E; Meijer LA; Rensen MG; Rehmann H; Bos JL
    J Cell Biol; 2011 Jun; 193(6):1009-20. PubMed ID: 21670213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.