These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34110463)

  • 21. Comparison of the human's and camel's red blood cell deformability by optical tweezers and Raman spectroscopy.
    Pesen T; Haydaroglu M; Capar S; Parlatan U; Unlu MB
    Biochem Biophys Rep; 2023 Sep; 35():101490. PubMed ID: 37664525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of substrate and photo-induced effects in Raman spectroscopy of single functional erythrocytes.
    Ramser K; Bjerneld EJ; Fant C; Käll M
    J Biomed Opt; 2003 Apr; 8(2):173-8. PubMed ID: 12683842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers.
    De Luca AC; Rusciano G; Ciancia R; Martinelli V; Pesce G; Rotoli B; Selvaggi L; Sasso A
    Opt Express; 2008 May; 16(11):7943-57. PubMed ID: 18545504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy.
    Raj S; Wojdyla M; Petrov D
    Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarized Raman spectroscopic investigations on hemoglobin ordering in red blood cells.
    Ahlawat S; Chowdhury A; Kumar N; Uppal A; Verma RS; Gupta PK
    J Biomed Opt; 2014 Aug; 19(8):087002. PubMed ID: 25121481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The bystander effect in optically trapped red blood cells due to Plasmodium falciparum infection.
    Paul A; Pallavi R; Tatu US; Natarajan V
    Trans R Soc Trop Med Hyg; 2013 Apr; 107(4):220-3. PubMed ID: 23426112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of the trapping efficiency of an elliptical optical trap with rigid and elastic objects.
    Kauppila A; Kinnunen M; Karmenyan A; Myllylä R
    Appl Opt; 2012 Aug; 51(23):5705-12. PubMed ID: 22885584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Red blood cell membrane damage by light-induced thermal gradient under optical trap.
    Chowdhury A; Waghmare D; Dasgupta R; Majumder SK
    J Biophotonics; 2018 Aug; 11(8):e201700222. PubMed ID: 29498486
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser Tweezers Raman Microspectroscopy of Single Cells and Biological Particles.
    Navas-Moreno M; Chan JW
    Methods Mol Biol; 2018; 1745():219-257. PubMed ID: 29476472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multifunctional manipulation of red blood cells using optical tweezers.
    Xie Y; Liu X
    J Biophotonics; 2022 Feb; 15(2):e202100315. PubMed ID: 34773382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy.
    Gessner R; Winter C; Rösch P; Schmitt M; Petry R; Kiefer W; Lankers M; Popp J
    Chemphyschem; 2004 Aug; 5(8):1159-70. PubMed ID: 15446738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The effect of abnormal cell shape on the spectral distinguishing of erythrocytes using laser tweezers Raman spectroscopy].
    Wang GW; Peng LX; Yao HL; Huang SS; Chen P; Li YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Aug; 29(8):2117-21. PubMed ID: 19839321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Resonance Raman spectra of single red-cell from human blood].
    Yan XL; Dong RX; Wang QG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):576-8. PubMed ID: 15769050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single cell spectroscopy of red blood cells in intravenous crystalloid fluids.
    N M; Lukose J; Mohan G; Shastry S; Chidangil S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Aug; 257():119726. PubMed ID: 33848954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements.
    de Oliveira MA; Moura DS; Fontes A; de Araujo RE
    J Biomed Opt; 2016 Jul; 21(7):75012. PubMed ID: 27435896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique.
    Agrawal R; Smart T; Nobre-Cardoso J; Richards C; Bhatnagar R; Tufail A; Shima D; H Jones P; Pavesio C
    Sci Rep; 2016 Mar; 6():15873. PubMed ID: 26976672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing oxidative stress in single erythrocytes with Raman Tweezers.
    Zachariah E; Bankapur A; Santhosh C; Valiathan M; Mathur D
    J Photochem Photobiol B; 2010 Sep; 100(3):113-6. PubMed ID: 20561796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence imaging of stained red blood cells with simultaneous resonance Raman photostability analysis.
    Talib AJ; Fisher A; Voronine DV; Sinyukov AM; Bustamante Lopez SC; Ambardar S; Meissner KE; Scully MO; Sokolov AV
    Analyst; 2019 Jul; 144(14):4362-4370. PubMed ID: 31197297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopy-based characterization of Hb-NO adducts in human red blood cells exposed to NO-donor and endothelium-derived NO.
    Dybas J; Berkowicz P; Proniewski B; Dziedzic-Kocurek K; Stanek J; Baranska M; Chlopicki S; Marzec KM
    Analyst; 2018 Sep; 143(18):4335-4346. PubMed ID: 30109873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells.
    Liao GB; Bareil PB; Sheng Y; Chiou A
    Opt Express; 2008 Feb; 16(3):1996-2004. PubMed ID: 18542279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.