These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 3411055)

  • 1. Ultrasonic backscatter from flowing whole blood. I: Dependence on shear rate and hematocrit.
    Yuan YW; Shung KK
    J Acoust Soc Am; 1988 Jul; 84(1):52-8. PubMed ID: 3411055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic backscatter from flowing whole blood. II: Dependence on frequency and fibrinogen concentration.
    Yuan YW; Shung KK
    J Acoust Soc Am; 1988 Oct; 84(4):1195-200. PubMed ID: 3058769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic attenuation and backscatter from flowing whole blood are dependent on shear rate and hematocrit between 10 and 50 MHz.
    Huang CC; Chang YC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):357-68. PubMed ID: 21342821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow.
    Nam KH; Paeng DG; Choi MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):270-9. PubMed ID: 19251514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
    Huang CC
    Phys Med Biol; 2010 Oct; 55(19):5801-15. PubMed ID: 20844333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of flow disturbance on ultrasonic backscatter from blood.
    Shung KK; Yuan YW; Fei DY; Tarbell JM
    J Acoust Soc Am; 1984 Apr; 75(4):1265-72. PubMed ID: 6725778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echoicity of whole blood.
    Yuan YW; Shung KK
    J Ultrasound Med; 1989 Aug; 8(8):425-34. PubMed ID: 2668553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of hematocrit, shear rate, and turbulence on ultrasonic Doppler spectrum from blood.
    Shung KK; Cloutier G; Lim CC
    IEEE Trans Biomed Eng; 1992 May; 39(5):462-9. PubMed ID: 1526637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound.
    Amararene A; Cloutier G
    Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical variations of ultrasound signals backscattered from flowing blood.
    Huang CC; Wang SH
    Ultrasound Med Biol; 2007 Dec; 33(12):1943-54. PubMed ID: 17673357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of flow acceleration on the cyclic variation of blood echogenicity under pulsatile flow.
    Huang CC; Liao CC; Lee PY; Shih CC
    Ultrasound Med Biol; 2013 Apr; 39(4):670-80. PubMed ID: 23384462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic backscattering from porcine whole blood of varying hematocrit and shear rate under pulsatile flow.
    Lin YH; Shung KK
    Ultrasound Med Biol; 1999 Sep; 25(7):1151-8. PubMed ID: 10574347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frequency ultrasonic backscatter from erythrocyte suspension.
    Kuo IY; Shung KK
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):29-34. PubMed ID: 8200665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.
    Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1677-88. PubMed ID: 19686983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A point process approach to assess the frequency dependence of ultrasound backscattering by aggregating red blood cells.
    Savéry D; Cloutier G
    J Acoust Soc Am; 2001 Dec; 110(6):3252-62. PubMed ID: 11785826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Clutter Filter in High-Frame-Rate Ultrasonic Backscatter Coefficient Analysis.
    Omura M; Yagi K; Nagaoka R; Yoshida K; Yamaguchi T; Hasegawa H
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting spatial variations of erythrocytes by ultrasound backscattering statistical parameters under pulsatile flow.
    Huang CC
    IEEE Trans Biomed Eng; 2011 May; 58(5):1163-71. PubMed ID: 21134805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Doppler variance imaging for red blood cell aggregation characterization.
    Xu X; Ahn YC; Chen Z
    J Biomed Opt; 2009; 14(6):060507. PubMed ID: 20059238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echogenicity variations from porcine blood I: the "bright collapsing ring" under pulsatile flow.
    Paeng DG; Chiao RY; Shung KK
    Ultrasound Med Biol; 2004 Jan; 30(1):45-55. PubMed ID: 14962607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.