These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
489 related articles for article (PubMed ID: 34110578)
1. Development and validation of consensus machine learning-based models for the prediction of novel small molecules as potential anti-tubercular agents. Wani MA; Roy KK Mol Divers; 2022 Jun; 26(3):1345-1356. PubMed ID: 34110578 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides. Wani MA; Garg P; Roy KK Med Biol Eng Comput; 2021 Nov; 59(11-12):2397-2408. PubMed ID: 34632545 [TBL] [Abstract][Full Text] [Related]
4. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets. Zorn KM; Lane TR; Russo DP; Clark AM; Makarov V; Ekins S Mol Pharm; 2019 Apr; 16(4):1620-1632. PubMed ID: 30779585 [TBL] [Abstract][Full Text] [Related]
5. Identification of active molecules against Mycobacterium tuberculosis through machine learning. Ye Q; Chai X; Jiang D; Yang L; Shen C; Zhang X; Li D; Cao D; Hou T Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822874 [TBL] [Abstract][Full Text] [Related]
6. MLASM: Machine learning based prediction of anticancer small molecules. Balaji PD; Selvam S; Sohn H; Madhavan T Mol Divers; 2024 Aug; 28(4):2153-2161. PubMed ID: 38554168 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Models Identify New Inhibitors for Human OATP1B1. Lane TR; Urbina F; Zhang X; Fye M; Gerlach J; Wright SH; Ekins S Mol Pharm; 2022 Nov; 19(11):4320-4332. PubMed ID: 36269563 [TBL] [Abstract][Full Text] [Related]
8. Machine learning-based drug design for identification of thymidylate kinase inhibitors as a potential anti-Mycobacterium tuberculosis. Shahab M; Danial M; Duan X; Khan T; Liang C; Gao H; Chen M; Wang D; Zheng G J Biomol Struct Dyn; 2024 May; 42(8):3874-3886. PubMed ID: 37232453 [TBL] [Abstract][Full Text] [Related]
9. Prediction of diabetes disease using an ensemble of machine learning multi-classifier models. Abnoosian K; Farnoosh R; Behzadi MH BMC Bioinformatics; 2023 Sep; 24(1):337. PubMed ID: 37697283 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters. Peng K; Tang Z; Dong L; Sun D Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770274 [TBL] [Abstract][Full Text] [Related]
11. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery. Lane T; Russo DP; Zorn KM; Clark AM; Korotcov A; Tkachenko V; Reynolds RC; Perryman AL; Freundlich JS; Ekins S Mol Pharm; 2018 Oct; 15(10):4346-4360. PubMed ID: 29672063 [TBL] [Abstract][Full Text] [Related]
12. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods. Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the performance of various machine learning methods on the discrimination of the active compounds. Shamsara J Chem Biol Drug Des; 2021 Apr; 97(4):930-943. PubMed ID: 33370504 [TBL] [Abstract][Full Text] [Related]
14. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture. Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease. Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840 [TBL] [Abstract][Full Text] [Related]
16. Fusing dual-event data sets for Mycobacterium tuberculosis machine learning models and their evaluation. Ekins S; Freundlich JS; Reynolds RC J Chem Inf Model; 2013 Nov; 53(11):3054-63. PubMed ID: 24144044 [TBL] [Abstract][Full Text] [Related]
17. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach. Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705 [TBL] [Abstract][Full Text] [Related]
18. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction. Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914 [TBL] [Abstract][Full Text] [Related]
19. Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets. Periwal V; Kishtapuram S; ; Scaria V BMC Pharmacol; 2012 Mar; 12():1. PubMed ID: 22463123 [TBL] [Abstract][Full Text] [Related]
20. Prediction of heart disease and classifiers' sensitivity analysis. Almustafa KM BMC Bioinformatics; 2020 Jul; 21(1):278. PubMed ID: 32615980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]