These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34110665)

  • 1. Anisotropically Fatigue-Resistant Hydrogels.
    Liang X; Chen G; Lin S; Zhang J; Wang L; Zhang P; Wang Z; Wang Z; Lan Y; Ge Q; Liu J
    Adv Mater; 2021 Jul; 33(30):e2102011. PubMed ID: 34110665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.
    Liang X; Chen G; Lin S; Zhang J; Wang L; Zhang P; Lan Y; Liu J
    Adv Mater; 2022 Feb; 34(8):e2107106. PubMed ID: 34888962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong tough hydrogels via the synergy of freeze-casting and salting out.
    Hua M; Wu S; Ma Y; Zhao Y; Chen Z; Frenkel I; Strzalka J; Zhou H; Zhu X; He X
    Nature; 2021 Feb; 590(7847):594-599. PubMed ID: 33627812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact-Resistant Hydrogels by Harnessing 2D Hierarchical Structures.
    Liang X; Chen G; Lei IM; Zhang P; Wang Z; Chen X; Lu M; Zhang J; Wang Z; Sun T; Lan Y; Liu J
    Adv Mater; 2023 Jan; 35(1):e2207587. PubMed ID: 36284475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle-like fatigue-resistant hydrogels by mechanical training.
    Lin S; Liu J; Liu X; Zhao X
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10244-10249. PubMed ID: 31068458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue-resistant adhesion of hydrogels.
    Liu J; Lin S; Liu X; Qin Z; Yang Y; Zang J; Zhao X
    Nat Commun; 2020 Feb; 11(1):1071. PubMed ID: 32103027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-injection molded, poly(vinyl alcohol)-calcium salt templates for precise customization of 3D hydrogel internal architecture.
    McNulty JD; Marti-Figueroa C; Seipel F; Plantz JZ; Ellingham T; Duddleston LJL; Goris S; Cox BL; Osswald TA; Turng LS; Ashton RS
    Acta Biomater; 2019 Sep; 95():258-268. PubMed ID: 31028908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong, tough, rapid-recovery, and fatigue-resistant hydrogels made of picot peptide fibres.
    Xue B; Bashir Z; Guo Y; Yu W; Sun W; Li Y; Zhang Y; Qin M; Wang W; Cao Y
    Nat Commun; 2023 May; 14(1):2583. PubMed ID: 37142590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tough hydrogel with high water content and ordered fibrous structures as an artificial human ligament.
    Han S; Wu Q; Zhu J; Zhang J; Chen A; Su S; Liu J; Huang J; Yang X; Guan L
    Mater Horiz; 2023 Mar; 10(3):1012-1019. PubMed ID: 36655678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh.
    Wang J; Wu B; Wei P; Sun S; Wu P
    Nat Commun; 2022 Jul; 13(1):4411. PubMed ID: 35906238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels.
    Li X; Cui K; Kurokawa T; Ye YN; Sun TL; Yu C; Creton C; Gong JP
    Sci Adv; 2021 Apr; 7(16):. PubMed ID: 33853776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides.
    Chowdhury MN; Alam AK; Dafader NC; Haque ME; Akhtar F; Ahmed MU; Rashid H; Begum R
    Biomed Mater Eng; 2006; 16(3):223-8. PubMed ID: 16518021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on the Adaption of Alginate-Gelatin Hydrogels for 3D Cultures and Bioprinting.
    Łabowska MB; Cierluk K; Jankowska AM; Kulbacka J; Detyna J; Michalak I
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33579053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue Fracture of Self-Recovery Hydrogels.
    Bai R; Yang J; Morelle XP; Yang C; Suo Z
    ACS Macro Lett; 2018 Mar; 7(3):312-317. PubMed ID: 35632906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels.
    Gan S; Bai S; Chen C; Zou Y; Sun Y; Zhao J; Rong J
    Int J Biol Macromol; 2021 Jun; 181():418-425. PubMed ID: 33781814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques.
    Charron PN; Braddish TA; Oldinski RA
    J Mech Behav Biomed Mater; 2019 Apr; 92():90-96. PubMed ID: 30665114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering.
    Möller L; Krause A; Dahlmann J; Gruh I; Kirschning A; Dräger G
    Int J Artif Organs; 2011 Feb; 34(2):93-102. PubMed ID: 21374568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.
    Suzuki A; Sasaki S
    Proc Inst Mech Eng H; 2015 Dec; 229(12):828-44. PubMed ID: 26614797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.
    Zhao Z; Fang R; Rong Q; Liu M
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 29059482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.