BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34110785)

  • 1. Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures.
    Jalili AR; Satalov A; Nazari S; Rahmat Suryanto BH; Sun J; Ghasemian MB; Mayyas M; Kandjani AE; Sabri YM; Mayes E; Bhargava SK; Araki J; Zakri C; Poulin P; Esrafilzadeh D; Amal R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28627-28638. PubMed ID: 34110785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V
    Zhou H; Zheng S; Guo X; Gao Y; Li H; Pang H
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):24-32. PubMed ID: 35973255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Bionic Nanodevices.
    Kong YL; Gupta MK; Johnson BN; McAlpine MC
    Nano Today; 2016 Jun; 11(3):330-350. PubMed ID: 27617026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing Hierarchically Nano-Ordered Structures.
    Weidinger B; Yang G; von Coelln N; Nirschl H; Wacker I; Tegeder P; Schröder RR; Blasco E
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302756. PubMed ID: 37532671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications.
    Hassan K; Nine MJ; Tung TT; Stanley N; Yap PL; Rastin H; Yu L; Losic D
    Nanoscale; 2020 Oct; 12(37):19007-19042. PubMed ID: 32945332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical Co-Assembly Enhanced Direct Ink Writing.
    Li L; Zhang P; Zhang Z; Lin Q; Wu Y; Cheng A; Lin Y; Thompson CM; Smaldone RA; Ke C
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5105-5109. PubMed ID: 29505167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks.
    Chakraborty PK; Azadmanjiri J; Pavithra CLP; Wang X; Masood SH; Dey SR; Wang J
    Small; 2020 Dec; 16(49):e2004900. PubMed ID: 33185035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor.
    Wang Z; Zhang QE; Long S; Luo Y; Yu P; Tan Z; Bai J; Qu B; Yang Y; Shi J; Zhou H; Xiao ZY; Hong W; Bai H
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10437-10444. PubMed ID: 29543426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compound detection.
    Hassan K; Tung TT; Stanley N; Yap PL; Farivar F; Rastin H; Nine MJ; Losic D
    Nanoscale; 2021 Mar; 13(10):5356-5368. PubMed ID: 33660735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Patterning and Spontaneous Self-Assembly of Graphene Oxide via Electrohydrodynamic Jet Printing for Energy Storage and Sensing.
    Zhang B; Lee J; Kim M; Lee N; Lee H; Byun D
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing.
    Markstedt K; Escalante A; Toriz G; Gatenholm P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40878-40886. PubMed ID: 29068193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide.
    Ma J; Wang P; Dong L; Ruan Y; Lu H
    J Colloid Interface Sci; 2019 Jan; 534():12-19. PubMed ID: 30196197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Printing Hollow Polymer Template-Mediated Graphene Lattices with Tailorable Architectures and Multifunctional Properties.
    Zhang Q; Zhang F; Xu X; Zhou C; Lin D
    ACS Nano; 2018 Feb; 12(2):1096-1106. PubMed ID: 29328672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing High-Consistency Enzymatic Nanocellulose Obtained from a Soda-Ethanol-O
    Kangas H; Felissia FE; Filgueira D; Ehman NV; Vallejos ME; Imlauer CM; Lahtinen P; Area MC; Chinga-Carrasco AG
    Bioengineering (Basel); 2019 Jul; 6(3):. PubMed ID: 31315280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.