These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 34110816)
1. Separation of Photochemical and Non-Photochemical Diurnal In-Stream Attenuation of Micropollutants. Schmitt M; Wack K; Glaser C; Wei R; Zwiener C Environ Sci Technol; 2021 Jul; 55(13):8908-8917. PubMed ID: 34110816 [TBL] [Abstract][Full Text] [Related]
2. Fate of pharmaceuticals in rivers: Deriving a benchmark dataset at favorable attenuation conditions. Kunkel U; Radke M Water Res; 2012 Nov; 46(17):5551-5565. PubMed ID: 22898670 [TBL] [Abstract][Full Text] [Related]
3. Spatial and Temporal Variability in Attenuation of Polar Organic Micropollutants in an Urban Lowland Stream. Jaeger A; Posselt M; Betterle A; Schaper J; Mechelke J; Coll C; Lewandowski J Environ Sci Technol; 2019 Mar; 53(5):2383-2395. PubMed ID: 30754970 [TBL] [Abstract][Full Text] [Related]
4. Temporal and spatial variable in-stream attenuation of selected pharmaceuticals. Glaser C; Zarfl C; Werneburg M; Böckmann M; Zwiener C; Schwientek M Sci Total Environ; 2020 Nov; 741():139514. PubMed ID: 32887017 [TBL] [Abstract][Full Text] [Related]
5. Persistence of N-oxides transformation products of tertiary amine drugs at lab and field studies. Manasfi R; Tadić D; Gomez O; Perez S; Chiron S Chemosphere; 2022 Dec; 309(Pt 1):136661. PubMed ID: 36191765 [TBL] [Abstract][Full Text] [Related]
6. A model assessment of the potential of river water to induce the photochemical attenuation of pharmaceuticals downstream of a wastewater treatment plant (Guadiana River, Badajoz, Spain). Vione D; Encinas A; Fabbri D; Calza P Chemosphere; 2018 May; 198():473-481. PubMed ID: 29425948 [TBL] [Abstract][Full Text] [Related]
7. Chiral signature of venlafaxine as a marker of biological attenuation processes. Li Z; Gomez E; Fenet H; Chiron S Chemosphere; 2013 Feb; 90(6):1933-8. PubMed ID: 23159067 [TBL] [Abstract][Full Text] [Related]
8. Degradation of lidocaine, tramadol, venlafaxine and the metabolites O-desmethyltramadol and O-desmethylvenlafaxine in surface waters. Rúa-Gómez PC; Püttmann W Chemosphere; 2013 Feb; 90(6):1952-9. PubMed ID: 23159069 [TBL] [Abstract][Full Text] [Related]
9. Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: photochemical and biological transformation. Lin AY; Plumlee MH; Reinhard M Environ Toxicol Chem; 2006 Jun; 25(6):1458-64. PubMed ID: 16764462 [TBL] [Abstract][Full Text] [Related]
10. Reactive tracer test to evaluate the fate of pharmaceuticals in rivers. Kunkel U; Radke M Environ Sci Technol; 2011 Aug; 45(15):6296-302. PubMed ID: 21671643 [TBL] [Abstract][Full Text] [Related]
11. Modeling the photochemical attenuation of down-the-drain chemicals during river transport by stochastic methods and field measurements of pharmaceuticals and personal care products. Hanamoto S; Nakada N; Yamashita N; Tanaka H Environ Sci Technol; 2013; 47(23):13571-7. PubMed ID: 24199688 [TBL] [Abstract][Full Text] [Related]
12. Attenuation of wastewater-derived contaminants in an effluent-dominated river. Fono LJ; Kolodziej EP; Sedlak DL Environ Sci Technol; 2006 Dec; 40(23):7257-62. PubMed ID: 17180975 [TBL] [Abstract][Full Text] [Related]
13. Relevance of photocatalytic redox transformations of selected pharmaceuticals in a copper- and iron-rich Mediterranean intermittent river. Barbieri MV; Chiron S Chemosphere; 2023 Oct; 339():139762. PubMed ID: 37557999 [TBL] [Abstract][Full Text] [Related]
14. Do biotransformation data from laboratory experiments reflect micropollutant degradation in a large river basin? Seller C; Varga L; Börgardts E; Vogler B; Janssen E; Singer H; Fenner K; Honti M Water Res; 2023 May; 235():119908. PubMed ID: 37003113 [TBL] [Abstract][Full Text] [Related]
15. Photo-induced environmental depletion processes of beta-blockers in river waters. Liu QT; Cumming RI; Sharpe AD Photochem Photobiol Sci; 2009 Jun; 8(6):768-77. PubMed ID: 19492104 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the photolysis of pharmaceuticals within a river by 2 year field observations and toxicity changes by sunlight. Hanamoto S; Kawakami T; Nakada N; Yamashita N; Tanaka H Environ Sci Process Impacts; 2014 Dec; 16(12):2796-803. PubMed ID: 25384881 [TBL] [Abstract][Full Text] [Related]
17. Lessons learned from water/sediment-testing of pharmaceuticals. Radke M; Maier MP Water Res; 2014 May; 55():63-73. PubMed ID: 24602861 [TBL] [Abstract][Full Text] [Related]
18. Combining in vitro reporter gene bioassays with chemical analysis to assess changes in the water quality along the Ammer River, Southwestern Germany. Müller ME; Escher BI; Schwientek M; Werneburg M; Zarfl C; Zwiener C Environ Sci Eur; 2018; 30(1):20. PubMed ID: 29984126 [TBL] [Abstract][Full Text] [Related]
19. Assessing the phototransformation of diclofenac, clofibric acid and naproxen in surface waters: Model predictions and comparison with field data. Avetta P; Fabbri D; Minella M; Brigante M; Maurino V; Minero C; Pazzi M; Vione D Water Res; 2016 Nov; 105():383-394. PubMed ID: 27657658 [TBL] [Abstract][Full Text] [Related]
20. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters. Bodrato M; Vione D Environ Sci Process Impacts; 2014 Apr; 16(4):732-40. PubMed ID: 24356583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]