These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34110835)

  • 1. Tip Streaming of a Lipid-Stabilized Double Emulsion Generated in a Microfluidic Channel.
    Torbensen K; Baroud CN; Ristori S; Abou-Hassan A
    Langmuir; 2021 Jun; 37(24):7442-7448. PubMed ID: 34110835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the water/oil/water interface of phospholipid stabilized double emulsions by micro-focusing synchrotron SAXS.
    Clemente I; Torbensen K; Di Cola E; Rossi F; Ristori S; Abou-Hassan A
    RSC Adv; 2019 Oct; 9(57):33429-33435. PubMed ID: 35529139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-Stabilized Water-Oil Interfaces Studied by Microfocusing Small-Angle X-ray Scattering.
    Di Cola E; Torbensen K; Clemente I; Rossi F; Ristori S; Abou-Hassan A
    Langmuir; 2017 Sep; 33(36):9100-9105. PubMed ID: 28816051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation of double emulsions under conditions of flow cytometry hydrodynamic focusing.
    Ma S; Huck WT; Balabani S
    Lab Chip; 2015 Nov; 15(22):4291-301. PubMed ID: 26394745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-step generation of monodisperse agarose-solidified double emulsions (w/w/o) excluding an inner oil barrier.
    Brinkmann S; Oberpaul M; Glaeser J; Schäberle TF
    MethodsX; 2021; 8():101565. PubMed ID: 35004199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Step Generation of Multisomes from Lipid-Stabilized Double Emulsions.
    Czekalska MA; Jacobs AMJ; Toprakcioglu Z; Kong L; Baumann KN; Gang H; Zubaite G; Ye R; Mu B; Levin A; Huck WTS; Knowles TPJ
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6739-6747. PubMed ID: 33522221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic generation of ATPS droplets by transient double emulsion technique.
    Zhou C; Zhu P; Han X; Shi R; Tian Y; Wang L
    Lab Chip; 2021 Jul; 21(14):2684-2690. PubMed ID: 34170274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compartments for Synthetic Cells: Osmotically Assisted Separation of Oil from Double Emulsions in a Microfluidic Chip.
    Krafft D; López Castellanos S; Lira RB; Dimova R; Ivanov I; Sundmacher K
    Chembiochem; 2019 Oct; 20(20):2604-2608. PubMed ID: 31090995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells.
    Cai B; Ji TT; Wang N; Li XB; He RX; Liu W; Wang G; Zhao XZ; Wang L; Wang Z
    Lab Chip; 2019 Jan; 19(3):422-431. PubMed ID: 30575843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic and hydrothermal preparation of vesicles using sorbitan monolaurate/polyoxyethylene (20) sorbitan monolaurate (Span 20/Tween 20).
    Shimanouchi T; Hayashi T; Toramoto K; Fukuma S; Hayashi K; Yasuhara K; Kimura Y
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111836. PubMed ID: 34058692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodisperse Micro-Oil Droplets Stabilized by Polymerizable Phospholipid Coatings as Potential Drug Carriers.
    Park Y; Pham TA; Beigie C; Cabodi M; Cleveland RO; Nagy JO; Wong JY
    Langmuir; 2015 Sep; 31(36):9762-70. PubMed ID: 26303989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A programmable microenvironment for cellular studies via microfluidics-generated double emulsions.
    Zhang Y; Ho YP; Chiu YL; Chan HF; Chlebina B; Schuhmann T; You L; Leong KW
    Biomaterials; 2013 Jun; 34(19):4564-72. PubMed ID: 23522800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phospholipid emulsifiers on physicochemical properties of intravenous fat emulsions and/or drug carrier emulsions.
    Ishii F; Sasaki I; Ogata H
    J Pharm Pharmacol; 1990 Jul; 42(7):513-5. PubMed ID: 1980297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microenvironment of double emulsions in rectangular microchannels.
    Ma S; Sherwood JM; Huck WT; Balabani S
    Lab Chip; 2015 May; 15(10):2327-34. PubMed ID: 25900541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics fabrication of monodisperse biocompatible phospholipid vesicles for encapsulation and delivery of hydrophilic drug or active compound.
    Kong F; Zhang X; Hai M
    Langmuir; 2014 Apr; 30(13):3905-12. PubMed ID: 24552433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic melt emulsification for encapsulation and release of actives.
    Sun BJ; Shum HC; Holtze C; Weitz DA
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3411-6. PubMed ID: 21082834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.
    Ito T; Tsuji Y; Aramaki K; Tonooka N
    J Oleo Sci; 2012; 61(8):413-20. PubMed ID: 22864511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.