BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34111168)

  • 1. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.
    Wu Y; Liao S; Liu X; Li Z; Lu R
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3680-3690. PubMed ID: 34669579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PORF-DDPG: Learning Personalized Autonomous Driving Behavior with Progressively Optimized Reward Function.
    Chen J; Wu T; Shi M; Jiang W
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep deterministic policy gradient algorithm: A systematic review.
    Sumiea EH; Abdulkadir SJ; Alhussian HS; Al-Selwi SM; Alqushaibi A; Ragab MG; Fati SM
    Heliyon; 2024 May; 10(9):e30697. PubMed ID: 38765095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous Driving Control Based on the Technique of Semantic Segmentation.
    Tsai J; Chang CC; Li T
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M; Lee SY; Hong JS; Kwon NK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Whale Optimization Algorithm Approach for Deep Neural Networks.
    Brodzicki A; Piekarski M; Jaworek-Korjakowska J
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving.
    Yang F; Li X; Liu Q; Li Z; Gao X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV's Autonomous Motion Planning in Complex Unknown Environments.
    Hu Z; Wan K; Gao X; Zhai Y; Wang Q
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An enhanced deep deterministic policy gradient algorithm for intelligent control of robotic arms.
    Dong R; Du J; Liu Y; Heidari AA; Chen H
    Front Neuroinform; 2023; 17():1096053. PubMed ID: 36756212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lane Following Method Based on Improved DDPG Algorithm.
    He R; Lv H; Zhang S; Zhang D; Zhang H
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Decision-Making Strategy for Car Following Based on Naturalist Driving Data via Deep Reinforcement Learning.
    Li W; Zhang Y; Shi X; Qiu F
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the landing guidance of a reusable launch vehicle by improving genetic algorithm-based deep reinforcement learning using Hybrid Deterministic-Stochastic algorithm.
    Nugroho L; Andiarti R; Akmeliawati R; Wijaya SK
    PLoS One; 2024; 19(2):e0292539. PubMed ID: 38422052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating reinforcement learning with case-based model-assisted experience augmentation for process control.
    Lin R; Chen J; Xie L; Su H
    Neural Netw; 2023 Jan; 158():197-215. PubMed ID: 36462366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate Policy-Based Accelerated Deep Reinforcement Learning.
    Wang X; Gu Y; Cheng Y; Liu A; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces.
    Shi J; Li K; Piao C; Gao J; Chen L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. End-to-End Autonomous Navigation Based on Deep Reinforcement Learning with a Survival Penalty Function.
    Jeng SL; Chiang C
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Policy-Gradient and Actor-Critic Based State Representation Learning for Safe Driving of Autonomous Vehicles.
    Gupta A; Khwaja AS; Anpalagan A; Guan L; Venkatesh B
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.