These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34111168)

  • 41. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ant Colony-Based Hyperparameter Optimisation in Total Variation Reconstruction in X-ray Computed Tomography.
    Lohvithee M; Sun W; Chretien S; Soleimani M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Joint Beamforming, Power Allocation, and Splitting Control for SWIPT-Enabled IoT Networks with Deep Reinforcement Learning and Game Theory.
    Liu J; Lin CR; Hu YC; Donta PK
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336499
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator.
    Gutiérrez-Moreno R; Barea R; López-Guillén E; Araluce J; Bergasa LM
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366072
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach.
    Shi W; Chen L; Zhu X
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm.
    Houssein EH; Emam MM; Ali AA
    Neural Comput Appl; 2022; 34(20):18015-18033. PubMed ID: 35698722
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning.
    Chen Z; Luo B; Hu T; Xu X
    Neural Netw; 2023 Oct; 167():450-459. PubMed ID: 37683459
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem.
    Zhang J; Liu Q; Han X
    PLoS One; 2023; 18(3):e0283207. PubMed ID: 36943840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 56. DDPG-Based Throughput Optimization with AoI Constraint in Ambient Backscatter-Assisted Overlay CRN.
    Jia X; Zheng K; Chi K; Liu X
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590952
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust Reward-Free Actor-Critic for Cooperative Multiagent Reinforcement Learning.
    Lin Q; Ling Q
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37581973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toward robust and scalable deep spiking reinforcement learning.
    Akl M; Ergene D; Walter F; Knoll A
    Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy saving strategy of cloud data computing based on convolutional neural network and policy gradient algorithm.
    Yang D; Yu J; Du X; He Z; Li P
    PLoS One; 2022; 17(12):e0279649. PubMed ID: 36584089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.