These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34111354)

  • 1. Addressing Serine Lability in a Paramagnetic Dimethyl Sulfoxide Reductase Catalytic Intermediate.
    Kc K; Yang J; Kirk ML
    Inorg Chem; 2021 Jul; 60(13):9233-9237. PubMed ID: 34111354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray absorption spectroscopy of a quantitatively Mo(V) dimethyl sulfoxide reductase species.
    Pushie MJ; Cotelesage JJ; Lyashenko G; Hille R; George GN
    Inorg Chem; 2013 Mar; 52(6):2830-7. PubMed ID: 23445435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family.
    Bray RC; Adams B; Smith AT; Bennett B; Bailey S
    Biochemistry; 2000 Sep; 39(37):11258-69. PubMed ID: 10985771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics.
    Lim BS; Holm RH
    J Am Chem Soc; 2001 Mar; 123(9):1920-30. PubMed ID: 11456813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic and electronic structure studies of a dimethyl sulfoxide reductase catalytic intermediate: implications for electron- and atom-transfer reactivity.
    Mtei RP; Lyashenko G; Stein B; Rubie N; Hille R; Kirk ML
    J Am Chem Soc; 2011 Jun; 133(25):9762-74. PubMed ID: 21648481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monooxomolybdenum(VI) complexes possessing olefinic dithiolene ligands: probing Mo-S covalency contributions to electron transfer in dimethyl sulfoxide reductase family molybdoenzymes.
    Sugimoto H; Tatemoto S; Suyama K; Miyake H; Mtei RP; Itoh S; Kirk ML
    Inorg Chem; 2010 Jun; 49(12):5368-70. PubMed ID: 20491454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid, covalent addition of phosphine to dithiolene in a molybdenum tris(dithiolene). A new structural model for dimethyl sulfoxide reductase.
    Nguyen N; Lough AJ; Fekl U
    Inorg Chem; 2012 Jun; 51(12):6446-8. PubMed ID: 22646474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and electronic structure studies of symmetrized models for reduced members of the dimethylsulfoxide reductase enzyme family.
    McNaughton RL; Lim BS; Knottenbelt SZ; Holm RH; Kirk ML
    J Am Chem Soc; 2008 Apr; 130(14):4628-36. PubMed ID: 18341333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxido-Alcoholato and Oxido-Thiolato Molybdenum(VI) Core Structures.
    Sugimoto H; Sato M; Asano K; Suzuki T; Mieda K; Ogura T; Matsumoto T; Giles LJ; Pokhrel A; Kirk ML; Itoh S
    Inorg Chem; 2016 Feb; 55(4):1542-50. PubMed ID: 26816115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of dimethylsulfoxide reductase in the presence of dimethyl sulfide and the structure of the dimethyl sulfide-modified enzyme.
    Bray RC; Adams B; Smith AT; Richards RL; Lowe DJ; Bailey S
    Biochemistry; 2001 Aug; 40(33):9810-20. PubMed ID: 11502174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxo transfer reactions mediated by bis(dithiolene)tungsten analogues of the active sites of molybdoenzymes in the DMSO reductase family: comparative reactivity of tungsten and molybdenum.
    Sung KM; Holm RH
    J Am Chem Soc; 2001 Mar; 123(9):1931-43. PubMed ID: 11456814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase.
    Ha Y; Tenderholt AL; Holm RH; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2014 Jun; 136(25):9094-105. PubMed ID: 24884723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxo-carboxylato-molybdenum(VI) complexes possessing dithiolene ligands related to the active site of type II DMSOR family molybdoenzymes.
    Sugimoto H; Sato M; Giles LJ; Asano K; Suzuki T; Kirk ML; Itoh S
    Dalton Trans; 2013 Dec; 42(45):15927-30. PubMed ID: 24029827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site.
    Stewart LJ; Bailey S; Bennett B; Charnock JM; Garner CD; McAlpine AS
    J Mol Biol; 2000 Jun; 299(3):593-600. PubMed ID: 10835270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies of Rhodobacter sphaeroides Me2SO reductase.
    Cobb N; Conrads T; Hille R
    J Biol Chem; 2005 Mar; 280(12):11007-17. PubMed ID: 15649898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric control of reduction potential in oxomolybdenum centers: implications to the serine coordination in DMSO reductase.
    Davie SR; Rubie ND; Hammes BS; Carrano CJ; Kirk ML; Basu P
    Inorg Chem; 2001 Jun; 40(12):2632-3. PubMed ID: 11375669
    [No Abstract]   [Full Text] [Related]  

  • 17. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy.
    Butler CS; Charnock JM; Bennett B; Sears HJ; Reilly AJ; Ferguson SJ; Garner CD; Lowe DJ; Thomson AJ; Berks BC; Richardson DJ
    Biochemistry; 1999 Jul; 38(28):9000-12. PubMed ID: 10413473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox characteristics of the tungsten DMSO reductase of Rhodobacter capsulatus.
    Hagedoorn PL; Hagen WR; Stewart LJ; Docrat A; Bailey S; Garner CD
    FEBS Lett; 2003 Dec; 555(3):606-10. PubMed ID: 14675782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry.
    Adams B; Smith AT; Bailey S; McEwan AG; Bray RC
    Biochemistry; 1999 Jun; 38(26):8501-11. PubMed ID: 10387097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.