BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34111355)

  • 1. Comparison of (5 + 2) Cycloadditions Involving Oxidopyrylium and Oxidopyridinium Ions: Relative Reactivities.
    Lu Y; Tantillo DJ
    J Org Chem; 2021 Jul; 86(13):8652-8659. PubMed ID: 34111355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary Orbital Interactions Enhance the Reactivity of Alkynes in Diels-Alder Cycloadditions.
    Levandowski BJ; Svatunek D; Sohr B; Mikula H; Houk KN
    J Am Chem Soc; 2019 Feb; 141(6):2224-2227. PubMed ID: 30693769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidopyridinium Cycloadditions Revisited: A Combined Computational and Experimental Study on the Reactivity of 1-(2-Pyrimidyl)-3-oxidopyridinium Betaine.
    Yamamoto Y; Shizume Y; Tazawa S; Yasui T
    J Org Chem; 2023 Mar; 88(5):3193-3207. PubMed ID: 36802575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation-strain analysis reveals unexpected origin of fast reactivity in heteroaromatic azadiene inverse-electron-demand diels-alder cycloadditions.
    Talbot A; Devarajan D; Gustafson SJ; Fernández I; Bickelhaupt FM; Ess DH
    J Org Chem; 2015 Jan; 80(1):548-58. PubMed ID: 25490250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Bond-Nucleophilicity and -Electrophilicity Parameters: An Efficient Ordering System for 1,3-Dipolar Cycloadditions.
    Li L; Mayer RJ; Ofial AR; Mayr H
    J Am Chem Soc; 2023 Apr; 145(13):7416-7434. PubMed ID: 36952671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity.
    Barrales-Martínez C; Martínez-Araya JI; Jaque P
    J Phys Chem A; 2021 Jan; 125(3):801-815. PubMed ID: 33448854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concerted and stepwise mechanisms in metal-free and metal-assisted [4+3] cycloadditions involving allyl cations.
    Fernández I; Cossío FP; de Cózar A; Lledós A; Mascareñas JL
    Chemistry; 2010 Oct; 16(40):12147-57. PubMed ID: 20839191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model.
    Sengupta A; Li B; Svatunek D; Liu F; Houk KN
    Acc Chem Res; 2022 Sep; 55(17):2467-2479. PubMed ID: 36007242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway Bifurcation in the (4 + 3)/(5 + 2)-Cycloaddition of Butadiene and Oxidopyrylium Ylides: The Significance of Molecular Orbital Isosymmetry.
    Burns JM; Boittier ED
    J Org Chem; 2019 May; 84(10):5997-6005. PubMed ID: 30700089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical studies on synthetic and biosynthetic oxidopyrylium-alkene cycloadditions: pericyclic pathways to intricarene.
    Wang SC; Tantillo DJ
    J Org Chem; 2008 Feb; 73(4):1516-23. PubMed ID: 18205383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy of Concert and Origins of Regioselectivity for 1,3-Dipolar Cycloadditions of Diazomethane.
    Chen S; Hu T; Houk KN
    J Org Chem; 2021 May; 86(9):6840-6846. PubMed ID: 33858136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular (4+3) Cycloadditions of Oxidopyridinium Ions: Towards Daphnicyclidin A.
    Tu J; Ripa RA; Kelley SP; Harmata M
    Chemistry; 2022 Jul; 28(41):e202200370. PubMed ID: 35612968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Oxidopyridinium Ions Are Versatile Bioorthogonal Dipoles for Use in Cycloadditions with Cyclooctynes.
    Serhan M; Josephson JD; Masoud SS; Nakajima M; Pezacki JP
    Chemistry; 2024 Apr; 30(22):e202303699. PubMed ID: 38367278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maltol- and Allomaltol-Derived Oxidopyrylium Ylides: Methyl Substitution Pattern Kinetically Influences [5 + 3] Dimerization versus [5 + 2] Cycloaddition Reactions.
    Bejcek LP; Garimallaprabhakaran AK; Suyabatmaz DM; Greer A; Hersh WH; Greer EM; Murelli RP
    J Org Chem; 2019 Nov; 84(22):14670-14678. PubMed ID: 31603325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trifluoromethylated Oxidopyridinium Betaines: Unique (5+2) Cycloaddition Selectivity Imposed by 2- or 6-Trifluoromethyl Groups.
    Yamamoto Y; Tazawa S; Tadano R; Yasui T
    Chem Asian J; 2023 May; 18(10):e202300211. PubMed ID: 36990967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Mono- and Poly-CH/P Exchange(s) on the Aromaticity of the Tropylium Ion.
    Puri A; Gupta R
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27556433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.