These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34111595)
1. Separation and recovery of heavy metals zinc and lead from phosphorus flue dust by vacuum metallurgy. Ji W; Xie K; Yan S J Environ Manage; 2021 Sep; 294():113001. PubMed ID: 34111595 [TBL] [Abstract][Full Text] [Related]
2. A new method of recycling gallium from yellow phosphorus flue dust by vacuum thermal reduction process. Ji W; Xie K; Yan S; Huang H; Chen H J Hazard Mater; 2020 Dec; 400():123234. PubMed ID: 32585522 [TBL] [Abstract][Full Text] [Related]
3. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes. Zhan L; Xu Z Waste Manag Res; 2014 Dec; 32(12):1247-53. PubMed ID: 25391553 [TBL] [Abstract][Full Text] [Related]
4. Novel method for recovering valuable metals from Sn ash: Vacuum carbothermal reduction-directional condensation. Zhang H; Cao P; Wang K; Liu Y; Li Y; Yang B; Chen X; Xu B Waste Manag; 2024 Apr; 179():12-21. PubMed ID: 38447255 [TBL] [Abstract][Full Text] [Related]
5. State-of-the-art of recycling e-wastes by vacuum metallurgy separation. Zhan L; Xu Z Environ Sci Technol; 2014 Dec; 48(24):14092-102. PubMed ID: 25407107 [TBL] [Abstract][Full Text] [Related]
6. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals. Che J; Zhang W; Ma B; Chen Y; Wang L; Wang C Sci Total Environ; 2022 Oct; 843():157063. PubMed ID: 35780900 [TBL] [Abstract][Full Text] [Related]
7. A clean process for phosphorus recovery and gallium enrichment from phosphorus flue dust by sodium carbonate roasting. Ji W; Yan S; Xie K; Yuan X; Wang Z; Li Y J Hazard Mater; 2022 Feb; 424(Pt C):127580. PubMed ID: 34736211 [TBL] [Abstract][Full Text] [Related]
8. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps. Zhan L; Xu Z Environ Sci Technol; 2008 Oct; 42(20):7676-81. PubMed ID: 18983092 [TBL] [Abstract][Full Text] [Related]
9. Hazardous waste characterization among various thermal processes in South Korea: a comparative analysis. Shin SK; Kim WI; Jeon TW; Kang YY; Jeong SK; Yeon JM; Somasundaram S J Hazard Mater; 2013 Sep; 260():157-66. PubMed ID: 23747474 [TBL] [Abstract][Full Text] [Related]
10. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Batonneau Y; Bremard C; Gengembre L; Laureyns J; Le Maguer A; Le Maguer D; Perdrix E; Sobanska S Environ Sci Technol; 2004 Oct; 38(20):5281-9. PubMed ID: 15543727 [TBL] [Abstract][Full Text] [Related]
11. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues. Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201 [TBL] [Abstract][Full Text] [Related]
12. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Zheng N; Liu J; Wang Q; Liang Z Sci Total Environ; 2010 Jan; 408(4):726-33. PubMed ID: 19926116 [TBL] [Abstract][Full Text] [Related]
13. Fractionation and leachability of heavy metals from aged and recent Zn metallurgical leach residues from the Três Marias zinc plant (Minas Gerais, Brazil). Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED Environ Sci Pollut Res Int; 2016 Apr; 23(8):7504-16. PubMed ID: 26728285 [TBL] [Abstract][Full Text] [Related]
14. Eco-friendly treatment of copper smelting flue dust for recovering multiple heavy metals with economic and environmental benefits. Che J; Zhang W; Deen KM; Wang C J Hazard Mater; 2024 Mar; 465():133039. PubMed ID: 38006856 [TBL] [Abstract][Full Text] [Related]
15. Leaching properties of electric arc furnace dust prior/following alkaline extraction. Orescanin V; Mikelić L; Sofilić T; Rastovcan-Mioc A; Uzarević K; Medunić G; Elez L; Lulić S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):323-9. PubMed ID: 17365298 [TBL] [Abstract][Full Text] [Related]
16. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. Zhan L; Xia F; Ye Q; Xiang X; Xie B J Hazard Mater; 2015 Dec; 299():388-94. PubMed ID: 26150281 [TBL] [Abstract][Full Text] [Related]
17. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction. Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678 [TBL] [Abstract][Full Text] [Related]
18. Dustfall Heavy Metal Pollution During Winter in North China. Xiong QL; Zhao WJ; Guo XY; Shu TT; Chen FT; Zheng XX; Gong ZN Bull Environ Contam Toxicol; 2015 Oct; 95(4):548-54. PubMed ID: 26215458 [TBL] [Abstract][Full Text] [Related]
19. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff. Soleimanifar H; Deng Y; Wu L; Sarkar D Chemosphere; 2016 Jul; 154():289-292. PubMed ID: 27060636 [TBL] [Abstract][Full Text] [Related]
20. [Heavy Metal Contamination of Soils and Crops near a Zinc Smelter]. Chen F; Dong ZQ; Wang CC; Wei XH; Hu Y; Zhang LJ Huan Jing Ke Xue; 2017 Oct; 38(10):4360-4369. PubMed ID: 29965222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]