These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34111846)

  • 1. From contact electrification to triboelectric nanogenerators.
    Wang ZL
    Rep Prog Phys; 2021 Sep; 84(9):. PubMed ID: 34111846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Wettability: A Key to Optimizing Liquid-Solid Triboelectric Nanogenerators.
    Kulandaivel A; Potu S; Rajaboina RK; Khanapuram UK
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58029-58059. PubMed ID: 39413400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator.
    Hu J; Iwamoto M; Chen X
    Nanomicro Lett; 2023 Nov; 16(1):7. PubMed ID: 37930592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives.
    Wang ZL
    Faraday Discuss; 2014; 176():447-58. PubMed ID: 25406406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Electron-Transfer Mechanism in the Contact-Electrification Effect.
    Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL
    Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lightweight mobile stick-type water-based triboelectric nanogenerator with amplified current for portable safety devices.
    Cha K; Chung J; Heo D; Song M; Chung SH; Hwang PTJ; Kim D; Koo B; Hong J; Lee S
    Sci Technol Adv Mater; 2022; 23(1):161-168. PubMed ID: 35185391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators.
    Deng W; Zhou Y; Zhao X; Zhang S; Zou Y; Xu J; Yeh MH; Guo H; Chen J
    ACS Nano; 2020 Jul; 14(7):9050-9058. PubMed ID: 32627531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Electrification Performance and Mechanism of a Water-Solid Mode Triboelectric Nanogenerator.
    You J; Shao J; He Y; Yun FF; See KW; Wang ZL; Wang X
    ACS Nano; 2021 May; 15(5):8706-8714. PubMed ID: 33913695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators.
    Wu J; Zheng Y; Li X
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Self-Powered Sensors Based on Liquid-Solid Triboelectric Nanogenerators.
    Nguyen QT; Vu DL; Le CD; Ahn KK
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor.
    Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL
    ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advancements in solid-liquid triboelectric nanogenerators for energy harvesting and self-powered applications.
    Chatterjee S; Burman SR; Khan I; Saha S; Choi D; Lee S; Lin ZH
    Nanoscale; 2020 Sep; 12(34):17663-17697. PubMed ID: 32821897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact Electrification at the Liquid-Solid Interface.
    Lin S; Chen X; Wang ZL
    Chem Rev; 2022 Mar; 122(5):5209-5232. PubMed ID: 34160191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triboelectric Nanogenerator: Structure, Mechanism, and Applications.
    Kim WG; Kim DW; Tcho IW; Kim JK; Kim MS; Choi YK
    ACS Nano; 2021 Jan; 15(1):258-287. PubMed ID: 33427457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators.
    Xu J; Zou Y; Nashalian A; Chen J
    Front Chem; 2020; 8():577327. PubMed ID: 33330365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding and Controlling Electrostatic Discharge in Triboelectric Nanogenerators.
    Leon RT; Sherrell PC; Michel JI; Bullock J; Berry JD; Ellis AV
    ChemSusChem; 2024 Sep; 17(17):e202400366. PubMed ID: 38538554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Polyimide-Based Water-Solid Triboelectric Nanogenerator for Hydropower Harvesting.
    Tang N; Zheng Y; Yuan M; Jin K; Haick H
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32106-32114. PubMed ID: 34223763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triboelectric Nanogenerators for Harvesting Diverse Water Kinetic Energy.
    Cui X; Yu C; Wang Z; Wan D; Zhang H
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.