These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 34111855)
21. Assessing the Quality of Heart Rate Variability Estimated from Wrist and Finger PPG: A Novel Approach Based on Cross-Mapping Method. Nardelli M; Vanello N; Galperti G; Greco A; Scilingo EP Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498403 [TBL] [Abstract][Full Text] [Related]
22. The Effects of Filtering PPG Signal on Pulse Arrival Time-Systolic Blood Pressure Correlation. Wang W; Marefat F; Mohseni P; Kilgore K; Najafizadeh L Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():674-677. PubMed ID: 36086297 [TBL] [Abstract][Full Text] [Related]
23. Sinus or not: a new beat detection algorithm based on a pulse morphology quality index to extract normal sinus rhythm beats from wrist-worn photoplethysmography recordings. Papini GB; Fonseca P; Eerikäinen LM; Overeem S; Bergmans JWM; Vullings R Physiol Meas; 2018 Nov; 39(11):115007. PubMed ID: 30475748 [TBL] [Abstract][Full Text] [Related]
24. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Nakajima K; Tamura T; Miike H Med Eng Phys; 1996 Jul; 18(5):365-72. PubMed ID: 8818134 [TBL] [Abstract][Full Text] [Related]
25. Combined photoplethysmographic monitoring of respiration rate and pulse: a comparison between different measurement sites in spontaneously breathing subjects. Nilsson L; Goscinski T; Kalman S; Lindberg LG; Johansson A Acta Anaesthesiol Scand; 2007 Oct; 51(9):1250-7. PubMed ID: 17711563 [TBL] [Abstract][Full Text] [Related]
26. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans. Natarajan K; Block RC; Yavarimanesh M; Chandrasekhar A; Mestha LK; Inan OT; Hahn JO; Mukkamala R IEEE Trans Biomed Eng; 2022 Jan; 69(1):53-62. PubMed ID: 34097603 [TBL] [Abstract][Full Text] [Related]
27. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806 [TBL] [Abstract][Full Text] [Related]
28. A novel method for accurate estimation of HRV from smartwatch PPG signals. Bhowmik T; Dey J; Tiwari VN Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():109-112. PubMed ID: 29059822 [TBL] [Abstract][Full Text] [Related]
29. Motion artefact reduction of the photoplethysmographic signal in pulse transit time measurement. Foo JY; Wilson SJ; Williams GR; Harris M; Cooper DM Australas Phys Eng Sci Med; 2004 Dec; 27(4):165-73. PubMed ID: 15712583 [TBL] [Abstract][Full Text] [Related]
30. Benchmarking of Sensor Configurations and Measurement Sites for Out-of-the-Lab Photoplethysmography. Supelnic MN; Ferreira AF; Bota PJ; Brás-Rosário L; Plácido da Silva H Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203076 [TBL] [Abstract][Full Text] [Related]
31. In vivo investigation of ear canal pulse oximetry during hypothermia. Budidha K; Kyriacou PA J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679 [TBL] [Abstract][Full Text] [Related]
32. Signal quality measures for pulse oximetry through waveform morphology analysis. Sukor JA; Redmond SJ; Lovell NH Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696 [TBL] [Abstract][Full Text] [Related]
33. In obstructive sleep apnea patients, automatic determination of respiratory arrests by photoplethysmography signal and heart rate variability. Bozkurt MR; Uçar MK; Bozkurt F; Bilgin C Australas Phys Eng Sci Med; 2019 Dec; 42(4):959-979. PubMed ID: 31515685 [TBL] [Abstract][Full Text] [Related]
34. Comparison of heart rate variability signal features derived from electrocardiography and photoplethysmography in healthy individuals. Bolanos M; Nazeran H; Haltiwanger E Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4289-94. PubMed ID: 17946618 [TBL] [Abstract][Full Text] [Related]
35. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood. Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068 [TBL] [Abstract][Full Text] [Related]
36. The analysis of transesophageal oxygen saturation photoplethysmography from different signal sources. Mou L; Gong Q; Wei W; Gao B J Clin Monit Comput; 2013 Jun; 27(3):365-70. PubMed ID: 23475176 [TBL] [Abstract][Full Text] [Related]
37. Respiratory rate detection algorithms by photoplethysmography signal processing. Lee EM; Kim NH; Trang NT; Hong JH; Cha EJ; Lee TS Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1140-3. PubMed ID: 19162865 [TBL] [Abstract][Full Text] [Related]
38. Continuous blood pressure monitoring by photoplethysmography - signal preprocessing requirements based on blood flow modelling. Poliński A Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36827709 [No Abstract] [Full Text] [Related]
39. Novel Multi-Parametric Sensor System for Comprehensive Multi-Wavelength Photoplethysmography Characterization. Lambert Cause J; Solé Morillo Á; da Silva B; García-Naranjo JC; Stiens J Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514922 [TBL] [Abstract][Full Text] [Related]
40. Photoplethysmography upon cold stress-impact of measurement site and acquisition mode. Fleischhauer V; Bruhn J; Rasche S; Zaunseder S Front Physiol; 2023; 14():1127624. PubMed ID: 37324389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]