These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 34111955)
1. Tree-based exploration of the optimization objectives for automatic cervical cancer IMRT treatment planning. Wang H; Wang R; Liu J; Zhang J; Yao K; Yue H; Zhang Y; You J; Wu H Br J Radiol; 2021 Jul; 94(1123):20210214. PubMed ID: 34111955 [TBL] [Abstract][Full Text] [Related]
2. Automatic dose prediction using deep learning and plan optimization with finite-element control for intensity modulated radiation therapy. Shen Y; Tang X; Lin S; Jin X; Ding J; Shao M Med Phys; 2024 Jan; 51(1):545-555. PubMed ID: 37748133 [TBL] [Abstract][Full Text] [Related]
3. Impact of dose calculation accuracy during optimization on lung IMRT plan quality. Li Y; Rodrigues A; Li T; Yuan L; Yin FF; Wu QJ J Appl Clin Med Phys; 2015 Jan; 16(1):5137. PubMed ID: 25679172 [TBL] [Abstract][Full Text] [Related]
4. Automated Intensity Modulated Radiation Therapy Treatment Planning for Cervical Cancer Based on Convolution Neural Network. Jihong C; Penggang B; Xiuchun Z; Kaiqiang C; Wenjuan C; Yitao D; Jiewei Q; Kerun Q; Jing Z; Tianming W Technol Cancer Res Treat; 2020; 19():1533033820957002. PubMed ID: 33016230 [TBL] [Abstract][Full Text] [Related]
5. Volumetric-modulated arc therapy vs. c-IMRT in esophageal cancer: a treatment planning comparison. Yin L; Wu H; Gong J; Geng JH; Jiang F; Shi AH; Yu R; Li YH; Han SK; Xu B; Zhu GY World J Gastroenterol; 2012 Oct; 18(37):5266-75. PubMed ID: 23066322 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Planning Quality and Efficiency Between Conventional and Knowledge-based Algorithms in Nasopharyngeal Cancer Patients Using Intensity Modulated Radiation Therapy. Chang ATY; Hung AWM; Cheung FWK; Lee MCH; Chan OSH; Philips H; Cheng YT; Ng WT Int J Radiat Oncol Biol Phys; 2016 Jul; 95(3):981-990. PubMed ID: 27302513 [TBL] [Abstract][Full Text] [Related]
7. Fully automated searching for the optimal VMAT jaw settings based on Eclipse Scripting Application Programming Interface (ESAPI) and RapidPlan knowledge-based planning. Huang Y; Yue H; Wang M; Li S; Zhang J; Liu Z; Zhang Y J Appl Clin Med Phys; 2018 May; 19(3):177-182. PubMed ID: 29577614 [TBL] [Abstract][Full Text] [Related]
8. Attention-aware 3D U-Net convolutional neural network for knowledge-based planning 3D dose distribution prediction of head-and-neck cancer. Osman AFI; Tamam NM J Appl Clin Med Phys; 2022 Jul; 23(7):e13630. PubMed ID: 35533234 [TBL] [Abstract][Full Text] [Related]
9. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse. Peters S; Schiefer H; Plasswilm L Radiat Oncol; 2014 Jul; 9():153. PubMed ID: 25011529 [TBL] [Abstract][Full Text] [Related]
10. A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Cozzi L; Dinshaw KA; Shrivastava SK; Mahantshetty U; Engineer R; Deshpande DD; Jamema SV; Vanetti E; Clivio A; Nicolini G; Fogliata A Radiother Oncol; 2008 Nov; 89(2):180-91. PubMed ID: 18692929 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of Multi-Criteria Optimization-based Trade-Off exploration in combination with RapidPlan for head & neck radiotherapy planning. Miguel-Chumacero E; Currie G; Johnston A; Currie S Radiat Oncol; 2018 Nov; 13(1):229. PubMed ID: 30470254 [TBL] [Abstract][Full Text] [Related]
12. Automatic treatment planning for cervical cancer radiation therapy using direct three-dimensional patient anatomy match. Zhang D; Yuan Z; Hu P; Yang Y J Appl Clin Med Phys; 2022 Aug; 23(8):e13649. PubMed ID: 35635799 [TBL] [Abstract][Full Text] [Related]
13. Implementation and evaluation of an iterative-based algorithm for automatic beam angle optimization in breast cancer treatment planning. Guo Y; Zhong Y; Yu L; Zhang K; Wang J; Hu W Med Dosim; 2024 Summer; 49(2):127-138. PubMed ID: 37925299 [TBL] [Abstract][Full Text] [Related]
14. Comprehensive Comparison of Progressive Optimization Algorithm Based Automatic Plan and Manually Planned Treatment Technique for Cervical-Thoracic Esophageal Cancers. Zhou Y; Xiang X; Xiong J; Gong C Technol Cancer Res Treat; 2020; 19():1533033820973283. PubMed ID: 33176589 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric comparison of different multileaf collimator leaves in treatment planning of intensity-modulated radiotherapy for cervical cancer. Wang S; Ai P; Xie L; Xu Q; Bai S; Lu Y; Li P; Chen N Med Dosim; 2013; 38(4):454-9. PubMed ID: 24099965 [TBL] [Abstract][Full Text] [Related]
16. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans. Schmidt M; Lo JY; Grzetic S; Lutzky C; Brizel DM; Das SK Med Phys; 2015 Aug; 42(8):4428-34. PubMed ID: 26233173 [TBL] [Abstract][Full Text] [Related]
18. Automatic IMRT planning via static field fluence prediction (AIP-SFFP): a deep learning algorithm for real-time prostate treatment planning. Li X; Zhang J; Sheng Y; Chang Y; Yin FF; Ge Y; Wu QJ; Wang C Phys Med Biol; 2020 Sep; 65(17):175014. PubMed ID: 32663813 [TBL] [Abstract][Full Text] [Related]
19. Automatic IMRT treatment planning through fluence prediction and plan fine-tuning for nasopharyngeal carcinoma. Cai W; Ding S; Li H; Zhou X; Dou W; Zhou L; Song T; Li Y Radiat Oncol; 2024 Mar; 19(1):39. PubMed ID: 38509540 [TBL] [Abstract][Full Text] [Related]
20. Automatic VMAT planning for post-operative prostate cancer cases using particle swarm optimization: A proof of concept study. Künzel LA; Leibfarth S; Dohm OS; Müller AC; Zips D; Thorwarth D Phys Med; 2020 Jan; 69():101-109. PubMed ID: 31862575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]