These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34112912)

  • 1. Deciphering the constrained total energy expenditure model in humans by associating accelerometer-measured physical activity from wrist and hip.
    Fernández-Verdejo R; Alcantara JMA; Galgani JE; Acosta FM; Migueles JH; Amaro-Gahete FJ; Labayen I; Ortega FB; Ruiz JR
    Sci Rep; 2021 Jun; 11(1):12302. PubMed ID: 34112912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L; Chen KY; Acra SA; Buchowski MS
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study.
    White T; Westgate K; Hollidge S; Venables M; Olivier P; Wareham N; Brage S
    Int J Obes (Lond); 2019 Nov; 43(11):2333-2342. PubMed ID: 30940917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrist-worn triaxial accelerometry predicts the energy expenditure of non-vigorous daily physical activities.
    Sirichana W; Dolezal BA; Neufeld EV; Wang X; Cooper CB
    J Sci Med Sport; 2017 Aug; 20(8):761-765. PubMed ID: 28159535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Activity and Total Daily Energy Expenditure in Older US Adults: Constrained versus Additive Models.
    Willis EA; Creasy SA; Saint-Maurice PF; Keadle SK; Pontzer H; Schoeller D; Troiano RP; Matthews CE
    Med Sci Sports Exerc; 2022 Jan; 54(1):98-105. PubMed ID: 34334719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of Wrist-Wearable Activity Devices for Estimating Physical Activity in Adolescents: Comparative Study.
    Hao Y; Ma XK; Zhu Z; Cao ZB
    JMIR Mhealth Uhealth; 2021 Jan; 9(1):e18320. PubMed ID: 33410757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance.
    Sacko R; McIver K; Brazendale K; Pfeifer C; Brian A; Nesbitt D; Stodden DF
    Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713
    [No Abstract]   [Full Text] [Related]  

  • 9. Daily physical activity assessment: what is the importance of upper limb movements vs whole body movements?
    Kumahara H; Tanaka H; Schutz Y
    Int J Obes Relat Metab Disord; 2004 Sep; 28(9):1105-10. PubMed ID: 15211366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daily Physical Activity Among Toddlers: Hip and Wrist Accelerometer Assessments.
    Kwon S; Honegger K; Mason M
    Int J Environ Res Public Health; 2019 Nov; 16(21):. PubMed ID: 31683776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry.
    Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H
    Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study.
    Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM
    JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults?
    Bai C; Wanigatunga AA; Saldana S; Casanova R; Manini TM; Mardini MT
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites.
    Swartz AM; Strath SJ; Bassett DR; O'Brien WL; King GA; Ainsworth BE
    Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S450-6. PubMed ID: 10993414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic cost of physical activity in cystic fibrosis children during Pseudomonas aeruginosa pulmonary exacerbation.
    Béghin L; Gottrand F; Michaud L; Vodougnon H; Wizla-Derambure N; Hankard R; Husson MO; Turck D
    Clin Nutr; 2005 Feb; 24(1):88-96. PubMed ID: 15681106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Physical Activity Energy Expenditure during Free-Living from Wrist Accelerometry in UK Adults.
    White T; Westgate K; Wareham NJ; Brage S
    PLoS One; 2016; 11(12):e0167472. PubMed ID: 27936024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer.
    van Hees VT; Renström F; Wright A; Gradmark A; Catt M; Chen KY; Löf M; Bluck L; Pomeroy J; Wareham NJ; Ekelund U; Brage S; Franks PW
    PLoS One; 2011; 6(7):e22922. PubMed ID: 21829556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.
    Garnotel M; Bastian T; Romero-Ugalde HM; Maire A; Dugas J; Zahariev A; Doron M; Jallon P; Charpentier G; Franc S; Blanc S; Bonnet S; Simon C
    J Appl Physiol (1985); 2018 Mar; 124(3):780-790. PubMed ID: 29191980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.