BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34113244)

  • 1. Children ASD Evaluation Through Joint Analysis of EEG and Eye-Tracking Recordings With Graph Convolution Network.
    Zhang S; Chen D; Tang Y; Zhang L
    Front Hum Neurosci; 2021; 15():651349. PubMed ID: 34113244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional-Asymmetric Adaptive Graph Convolutional Neural Network for Diagnosis of Autism in Children With Resting-State EEG.
    Hu W; Jiang G; Han J; Li X; Xie P
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():200-211. PubMed ID: 38145528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid graph network model for ASD diagnosis based on resting-state EEG signals.
    Tang T; Li C; Zhang S; Chen Z; Yang L; Mu Y; Chen J; Xu P; Gao D; Li F; He B; Zhu Y
    Brain Res Bull; 2024 Jan; 206():110826. PubMed ID: 38040298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-region specific autism prediction from electroencephalogram signals using graph convolution neural network.
    Tigga NP; Garg S; Goyal N; Raj J; Das B
    Technol Health Care; 2024 Jun; ():. PubMed ID: 38943414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of autism spectrum disorder based on functional near-infrared spectroscopy using adaptive spatiotemporal graph convolution network.
    Zhang H; Xu L; Yu J; Li J; Wang J
    Front Neurosci; 2023; 17():1132231. PubMed ID: 36968494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multimodal Approach for Identifying Autism Spectrum Disorders in Children.
    Han J; Jiang G; Ouyang G; Li X
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2003-2011. PubMed ID: 35853070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data.
    Kang J; Han X; Song J; Niu Z; Li X
    Comput Biol Med; 2020 May; 120():103722. PubMed ID: 32250854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying Individuals with ASD Through Facial Emotion Recognition and Eye-Tracking.
    Jiang M; Francis SM; Srishyla D; Conelea C; Zhao Q; Jacob S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6063-6068. PubMed ID: 31947228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The "MS-ROM/IFAST" Model, a Novel Parallel Nonlinear EEG Analysis Technique, Distinguishes ASD Subjects From Children Affected With Other Neuropsychiatric Disorders With High Degree of Accuracy.
    Grossi E; Buscema M; Della Torre F; Swatzyna RJ
    Clin EEG Neurosci; 2019 Sep; 50(5):319-331. PubMed ID: 31296052
    [No Abstract]   [Full Text] [Related]  

  • 10. The Use of Eye Tracking as a Biomarker of Treatment Outcome in a Pilot Randomized Clinical Trial for Young Children with Autism.
    Bradshaw J; Shic F; Holden AN; Horowitz EJ; Barrett AC; German TC; Vernon TW
    Autism Res; 2019 May; 12(5):779-793. PubMed ID: 30891960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visualization and Deep Learning.
    Cilia F; Carette R; Elbattah M; Dequen G; Guérin JL; Bosche J; Vandromme L; Le Driant B
    JMIR Hum Factors; 2021 Oct; 8(4):e27706. PubMed ID: 34694238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust features for the automatic identification of autism spectrum disorder in children.
    Eldridge J; Lane AE; Belkin M; Dennis S
    J Neurodev Disord; 2014; 6(1):12. PubMed ID: 24936212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted Brain Network in Children with Autism Spectrum Disorder.
    Zeng K; Kang J; Ouyang G; Li J; Han J; Wang Y; Sokhadze EM; Casanova MF; Li X
    Sci Rep; 2017 Nov; 7(1):16253. PubMed ID: 29176705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Slowing down the flow of facial information enhances facial scanning in children with autism spectrum disorders: A pilot eye tracking study].
    Charrier A; Tardif C; Gepner B
    Encephale; 2017 Feb; 43(1):32-40. PubMed ID: 26995150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Kernel-based discriminant correlation analysis data-fusion approach: an automated autism spectrum disorder diagnostic system.
    Wadhera T
    Phys Eng Sci Med; 2024 Mar; 47(1):361-369. PubMed ID: 37982986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep EEG Superresolution via Correlating Brain Structural and Functional Connectivities.
    Tang Y; Chen D; Liu H; Cai C; Li X
    IEEE Trans Cybern; 2023 Jul; 53(7):4410-4422. PubMed ID: 35700255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early Screening of Children With Autism Spectrum Disorder Based on Electroencephalogram Signal Feature Selection With L1-Norm Regularization.
    Peng S; Xu R; Yi X; Hu X; Liu L; Liu L
    Front Hum Neurosci; 2021; 15():656578. PubMed ID: 34239427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Brain Network in Children with Autism from Early Childhood to Late Childhood.
    Han J; Zeng K; Kang J; Tong Z; Cai E; Chen H; Ding M; Gu Y; Ouyang G; Li X
    Neuroscience; 2017 Dec; 367():134-146. PubMed ID: 29069617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network centrality analysis of eye-gaze data in autism spectrum disorder.
    Sadria M; Karimi S; Layton AT
    Comput Biol Med; 2019 Aug; 111():103332. PubMed ID: 31276943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [ADI-R and ADOS and the differential diagnosis of autism spectrum disorders: Interests, limits and openings].
    Frigaux A; Evrard R; Lighezzolo-Alnot J
    Encephale; 2019 Nov; 45(5):441-448. PubMed ID: 31495549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.