These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 34113323)
1. Cellulolytic and Xylanolytic Microbial Communities Associated With Lignocellulose-Rich Wheat Straw Degradation in Anaerobic Digestion. Jensen MB; de Jonge N; Dolriis MD; Kragelund C; Fischer CH; Eskesen MR; Noer K; Møller HB; Ottosen LDM; Nielsen JL; Kofoed MVW Front Microbiol; 2021; 12():645174. PubMed ID: 34113323 [TBL] [Abstract][Full Text] [Related]
2. Effects of different pretreatment methods on biogas production and microbial community in anaerobic digestion of wheat straw. Kang YR; Su Y; Wang J; Chu YX; Tian G; He R Environ Sci Pollut Res Int; 2021 Oct; 28(37):51772-51785. PubMed ID: 33990921 [TBL] [Abstract][Full Text] [Related]
3. Enhanced biomethane production rate and yield from lignocellulosic ensiled forage ley by in situ anaerobic digestion treatment with endogenous cellulolytic enzymes. Speda J; Johansson MA; Odnell A; Karlsson M Biotechnol Biofuels; 2017; 10():129. PubMed ID: 28523077 [TBL] [Abstract][Full Text] [Related]
4. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw. Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O Anaerobe; 2017 Aug; 46():122-130. PubMed ID: 28323135 [TBL] [Abstract][Full Text] [Related]
5. Towards molecular biomarkers for biogas production from lignocellulose-rich substrates. Lebuhn M; Hanreich A; Klocke M; Schlüter A; Bauer C; Pérez CM Anaerobe; 2014 Oct; 29():10-21. PubMed ID: 24785351 [TBL] [Abstract][Full Text] [Related]
6. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Mulat DG; Huerta SG; Kalyani D; Horn SJ Biotechnol Biofuels; 2018; 11():19. PubMed ID: 29422947 [TBL] [Abstract][Full Text] [Related]
7. Reconsidering hydrolysis kinetics for anaerobic digestion of waste activated sludge applying cascade reactors with ultra-short residence times. Guo H; Oosterkamp MJ; Tonin F; Hendriks A; Nair R; van Lier JB; de Kreuk M Water Res; 2021 Sep; 202():117398. PubMed ID: 34252865 [TBL] [Abstract][Full Text] [Related]
8. Full-scale anaerobic reactor samples would be more suitable than lab-scale anaerobic reactor and natural samples to inoculate the wheat straw batch anaerobic digesters. Li K; Yun J; Zhang H; Yu Z Bioresour Technol; 2019 Dec; 293():122040. PubMed ID: 31454734 [TBL] [Abstract][Full Text] [Related]
9. Enhanced methane production from wheat straw with the assistance of lignocellulolytic microbial consortium TC-5. Kong X; Du J; Ye X; Xi Y; Jin H; Zhang M; Guo D Bioresour Technol; 2018 Sep; 263():33-39. PubMed ID: 29729539 [TBL] [Abstract][Full Text] [Related]
10. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. Lazuka A; Auer L; Bozonnet S; Morgavi DP; O'Donohue M; Hernandez-Raquet G Bioresour Technol; 2015 Nov; 196():241-9. PubMed ID: 26247975 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity. Ransom-Jones E; McCarthy AJ; Haldenby S; Doonan J; McDonald JE mSphere; 2017; 2(4):. PubMed ID: 28776044 [TBL] [Abstract][Full Text] [Related]
12. Lignocellulose degradation, biogas production and characteristics of the microbial community in solid-state anaerobic digestion of wheat straw waste. Jin X; Ai W; Dong W Life Sci Space Res (Amst); 2022 Feb; 32():1-7. PubMed ID: 35065755 [TBL] [Abstract][Full Text] [Related]
13. Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia. Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O Eng Life Sci; 2018 Jul; 18(7):440-446. PubMed ID: 32624925 [TBL] [Abstract][Full Text] [Related]
14. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. Jiménez DJ; Dini-Andreote F; van Elsas JD Biotechnol Biofuels; 2014; 7():92. PubMed ID: 24955113 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the enzymatic hydrolysis efficiency of wheat bran using the Bacillus strains and their consortium. Vu V; Farkas C; Riyad O; Bujna E; Kilin A; Sipiczki G; Sharma M; Usmani Z; Gupta VK; Nguyen QD Bioresour Technol; 2022 Jan; 343():126092. PubMed ID: 34634465 [TBL] [Abstract][Full Text] [Related]
17. Towards upscaling the valorization of wheat straw residues: alkaline pretreatment using sodium hydroxide, enzymatic hydrolysis and biogas production. Novakovic J; Kontogianni N; Barampouti EM; Mai S; Moustakas K; Malamis D; Loizidou M Environ Sci Pollut Res Int; 2021 May; 28(19):24486-24498. PubMed ID: 32342419 [TBL] [Abstract][Full Text] [Related]
18. Microbial consortia adaptation to substrate changes in anaerobic digestion. Dargode PS; More PP; Gore SS; Asodekar BR; Sharma MB; Lali AM Prep Biochem Biotechnol; 2022; 52(8):924-936. PubMed ID: 34895061 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Lazuka A; Auer L; O'Donohue M; Hernandez-Raquet G Biotechnol Biofuels; 2018; 11():284. PubMed ID: 30356893 [TBL] [Abstract][Full Text] [Related]
20. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]