These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 3411353)
1. Flexible body dynamics of the goldfish C-start: implications for reticulospinal command mechanisms. Eaton RC; DiDomenico R; Nissanov J J Neurosci; 1988 Aug; 8(8):2758-68. PubMed ID: 3411353 [TBL] [Abstract][Full Text] [Related]
2. The direction change concept for reticulospinal control of goldfish escape. Foreman MB; Eaton RC J Neurosci; 1993 Oct; 13(10):4101-13. PubMed ID: 8410180 [TBL] [Abstract][Full Text] [Related]
3. The motor output of the Mauthner cell, a reticulospinal command neuron. Nissanov J; Eaton RC; DiDomenico R Brain Res; 1990 May; 517(1-2):88-98. PubMed ID: 2376010 [TBL] [Abstract][Full Text] [Related]
4. Mauthner and reticulospinal responses to the onset of acoustic pressure and acceleration stimuli. Casagrand JL; Guzik AL; Eaton RC J Neurophysiol; 1999 Sep; 82(3):1422-37. PubMed ID: 10482759 [TBL] [Abstract][Full Text] [Related]
5. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish. Fetcho JR; Svoboda KR J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171 [TBL] [Abstract][Full Text] [Related]
6. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. DiDomenico R; Nissanov J; Eaton RC Brain Res; 1988 Nov; 473(1):15-28. PubMed ID: 3208117 [TBL] [Abstract][Full Text] [Related]
7. Some voluntary C-bends may be Mauthner neuron initiated. Canfield JG J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Oct; 193(10):1055-64. PubMed ID: 17674008 [TBL] [Abstract][Full Text] [Related]
8. Beating the competition: the reliability hypothesis for Mauthner axon size. Eaton RC; Hofve JC; Fetcho JR Brain Behav Evol; 1995; 45(4):183-94. PubMed ID: 7620869 [TBL] [Abstract][Full Text] [Related]
10. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Eaton RC; Lee RK; Foreman MB Prog Neurobiol; 2001 Mar; 63(4):467-85. PubMed ID: 11163687 [TBL] [Abstract][Full Text] [Related]
11. How stimulus direction determines the trajectory of the Mauthner-initiated escape response in a teleost fish. Eaton RC; Emberley DS J Exp Biol; 1991 Nov; 161():469-87. PubMed ID: 1757775 [TBL] [Abstract][Full Text] [Related]
12. Strikes and startles of northern pike (Esox lucius): a comparison of muscle activity and kinematics between S-start behaviors. Schriefer JE; Hale ME J Exp Biol; 2004 Jan; 207(Pt 3):535-44. PubMed ID: 14691101 [TBL] [Abstract][Full Text] [Related]
13. Excitation of motoneurons by the Mauthner axon in goldfish: complexities in a "simple" reticulospinal pathway. Fetcho JR J Neurophysiol; 1992 Jun; 67(6):1574-86. PubMed ID: 1629765 [TBL] [Abstract][Full Text] [Related]
14. Recovery of C-starts, equilibrium and targeted feeding after whole spinal cord crush in the adult goldfish Carassius auratus. Zottoli SJ; Freemer MM J Exp Biol; 2003 Sep; 206(Pt 17):3015-29. PubMed ID: 12878670 [TBL] [Abstract][Full Text] [Related]
15. Interactions between the neural networks for escape and swimming in goldfish. Svoboda KR; Fetcho JR J Neurosci; 1996 Jan; 16(2):843-52. PubMed ID: 8551364 [TBL] [Abstract][Full Text] [Related]
16. Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus). Weiss SA; Zottoli SJ; Do SC; Faber DS; Preuss T J Exp Biol; 2006 Dec; 209(Pt 23):4788-801. PubMed ID: 17114411 [TBL] [Abstract][Full Text] [Related]
17. Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Eaton RC; DiDomenico R; Nissanov J Brain Behav Evol; 1991; 37(5):272-85. PubMed ID: 1933251 [TBL] [Abstract][Full Text] [Related]
18. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors. Liu YC; Hale ME Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316 [TBL] [Abstract][Full Text] [Related]
19. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey. Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499 [TBL] [Abstract][Full Text] [Related]
20. Neuronal networks underlying the escape response in goldfish. General implications for motor control. Faber DS; Fetcho JR; Korn H Ann N Y Acad Sci; 1989; 563():11-33. PubMed ID: 2672948 [No Abstract] [Full Text] [Related] [Next] [New Search]