These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3411359)

  • 21. Lobster stomatogastric neurons in primary culture. I. Basic characteristics.
    Panchin YV; Arshavsky YI; Selverston A; Cleland TA
    J Neurophysiol; 1993 Jun; 69(6):1976-92. PubMed ID: 8102396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term neuromodulatory regulation of a motor pattern-generating network: maintenance of synaptic efficacy and oscillatory properties.
    Thoby-Brisson M; Simmers J
    J Neurophysiol; 2002 Dec; 88(6):2942-53. PubMed ID: 12466420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presynaptic control of modulatory fibers by their neural network targets.
    Nusbaum MP; Weimann JM; Golowasch J; Marder E
    J Neurosci; 1992 Jul; 12(7):2706-14. PubMed ID: 1613553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron.
    Harris-Warrick RM; Coniglio LM; Levini RM; Gueron S; Guckenheimer J
    J Neurophysiol; 1995 Oct; 74(4):1404-20. PubMed ID: 8989381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster.
    Clemens S; Combes D; Meyrand P; Simmers J
    J Neurophysiol; 1998 Mar; 79(3):1396-408. PubMed ID: 9497420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic restructuring of a rhythmic motor program by a single mechanoreceptor neuron in lobster.
    Combes D; Meyrand P; Simmers J
    J Neurosci; 1999 May; 19(9):3620-8. PubMed ID: 10212320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of serotonergic facilitation of a command neuron.
    Antonsen BL; Edwards DH
    J Neurophysiol; 2007 Dec; 98(6):3494-504. PubMed ID: 17898136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neural control of heartbeat in the leech and in some other invertebrates.
    Stent GS; Thompson WJ; Calabrese RL
    Physiol Rev; 1979 Jan; 59(1):101-36. PubMed ID: 220645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation and reconfiguration of fictive feeding by the octopamine-containing modulatory OC interneurons in the snail Lymnaea.
    Vehovszky A ; Elliott CJ
    J Neurophysiol; 2001 Aug; 86(2):792-808. PubMed ID: 11495951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions.
    Perrins R; Weiss KR
    J Neurosci; 1998 May; 18(10):3977-89. PubMed ID: 9570824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endogenous and network properties of Lymnaea feeding central pattern generator interneurons.
    Straub VA; Staras K; Kemenes G; Benjamin PR
    J Neurophysiol; 2002 Oct; 88(4):1569-83. PubMed ID: 12364488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional consequences of compartmentalization of synaptic input.
    Coleman MJ; Nusbaum MP
    J Neurosci; 1994 Nov; 14(11 Pt 1):6544-52. PubMed ID: 7965058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency control of a slow oscillatory network by a fast rhythmic input: pyloric to gastric mill interactions in the crab stomatogastric nervous system.
    Marder E; Manor Y; Nadim F; Bartos M; Nusbaum MP
    Ann N Y Acad Sci; 1998 Nov; 860():226-38. PubMed ID: 9928315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distributed amine modulation of graded chemical transmission in the pyloric network of the lobster stomatogastric ganglion.
    Johnson BR; Peck JH; Harris-Warrick RM
    J Neurophysiol; 1995 Jul; 74(1):437-52. PubMed ID: 7472345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maturation of rhythmic neural network: role of central modulatory inputs.
    FĂ©nelon V; Le Feuvre Y; Bem T; Meyrand P
    J Physiol Paris; 2003 Jan; 97(1):59-68. PubMed ID: 14706691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network.
    Rowat PF; Selverston AI
    J Neurophysiol; 1993 Sep; 70(3):1030-53. PubMed ID: 8229158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulator for neural networks and action potentials: description and application.
    Ziv I; Baxter DA; Byrne JH
    J Neurophysiol; 1994 Jan; 71(1):294-308. PubMed ID: 7512628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of gastric mill network effects on a movement related parameter of pyloric network output in the lobster.
    Thuma JB; Hooper SL
    J Neurophysiol; 2002 May; 87(5):2372-84. PubMed ID: 11976375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. II. Modulatory control of the pyloric CPG.
    Nagy F; Cardi P
    J Neurophysiol; 1994 Jun; 71(6):2490-502. PubMed ID: 7931530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of pyloric system.
    Miller JP; Selverston AI
    J Neurophysiol; 1982 Dec; 48(6):1416-32. PubMed ID: 7153799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.