These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

640 related articles for article (PubMed ID: 34113600)

  • 21. Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine.
    Uzair B; Liaqat A; Iqbal H; Menaa B; Razzaq A; Thiripuranathar G; Fatima Rana N; Menaa F
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33081248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbe-fabricated nanoparticles as potent biomaterials for efficient food preservation.
    Rai A; Sharma VK; Jain A; Sharma M; Pandey A; Singh HB; Gupta VK; Singh BN
    Int J Food Microbiol; 2022 Oct; 379():109833. PubMed ID: 35914405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Green synthesis of manganese nanoparticles: Applications and future perspective-A review.
    Hoseinpour V; Ghaemi N
    J Photochem Photobiol B; 2018 Dec; 189():234-243. PubMed ID: 30412855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Green synthesis of Fe
    Liu L; Li Y; Al-Huqail AA; Ali E; Alkhalifah T; Alturise F; Ali HE
    Chemosphere; 2023 Sep; 334():138638. PubMed ID: 37100254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles.
    Nguyen NTT; Nguyen LM; Nguyen TTT; Tran UPN; Nguyen DTC; Tran TV
    Chemosphere; 2023 Jan; 312(Pt 1):137301. PubMed ID: 36410506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications.
    Saratale RG; Saratale GD; Shin HS; Jacob JM; Pugazhendhi A; Bhaisare M; Kumar G
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10164-10183. PubMed ID: 28815433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment.
    Aqeel U; Aftab T; Khan MMA; Naeem M; Khan MN
    Chemosphere; 2022 Mar; 291(Pt 1):132672. PubMed ID: 34756946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants.
    Murali M; Gowtham HG; Shilpa N; Singh SB; Aiyaz M; Sayyed RZ; Shivamallu C; Achar RR; Silina E; Stupin V; Manturova N; Shati AA; Alfaifi MY; Elbehairi SEI; Kollur SP
    Front Microbiol; 2023; 14():1227951. PubMed ID: 37744917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects.
    Koul B; Poonia AK; Yadav D; Jin JO
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34203733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green synthesis of nanoparticles and its potential application.
    Hussain I; Singh NB; Singh A; Singh H; Singh SC
    Biotechnol Lett; 2016 Apr; 38(4):545-60. PubMed ID: 26721237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview.
    Al Jabri H; Saleem MH; Rizwan M; Hussain I; Usman K; Alsafran M
    Life (Basel); 2022 Apr; 12(4):. PubMed ID: 35455085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management.
    Tariq M; Mohammad KN; Ahmed B; Siddiqui MA; Lee J
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants.
    Oliveira HC; Gomes BC; Pelegrino MT; Seabra AB
    Nitric Oxide; 2016 Dec; 61():10-19. PubMed ID: 27693703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity.
    Guleria G; Thakur S; Shandilya M; Sharma S; Thakur S; Kalia S
    Plant Physiol Biochem; 2023 Jan; 194():533-549. PubMed ID: 36521290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review.
    El-Saadony MT; Saad AM; Soliman SM; Salem HM; Desoky EM; Babalghith AO; El-Tahan AM; Ibrahim OM; Ebrahim AAM; Abd El-Mageed TA; Elrys AS; Elbadawi AA; El-Tarabily KA; AbuQamar SF
    Front Plant Sci; 2022; 13():946717. PubMed ID: 36407622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology.
    Ahmad A; Hashmi SS; Palma JM; Corpas FJ
    Chemosphere; 2022 Mar; 290():133329. PubMed ID: 34922969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Algal-derived nanoparticles and their antibacterial potential: Current evidence and future prospectives.
    Mandal AK; Nayak R; Pradhan B; Behera C; Behera AK; Parida S; Patra S; Hembram P; Jena M
    J Microbiol Methods; 2023 Aug; 211():106790. PubMed ID: 37487886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Green fabrication of Co and Co
    Waris A; Din M; Ali A; Afridi S; Baset A; Khan AU; Ali M
    Open Life Sci; 2021; 16(1):14-30. PubMed ID: 33817294
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioinspired Nanomodification Strategies: Moving from Chemical-Based Agrosystems to Sustainable Agriculture.
    Xu L; Zhu Z; Sun DW
    ACS Nano; 2021 Aug; 15(8):12655-12686. PubMed ID: 34346204
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.