BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34113812)

  • 21. Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34.
    Julian DJ; Kershaw CJ; Brown NL; Hobman JL
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):149-59. PubMed ID: 19005773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations in the alpha and sigma-70 subunits of RNA polymerase affect expression of the mer operon.
    Caslake LF; Ashraf SI; Summers AO
    J Bacteriol; 1997 Mar; 179(5):1787-95. PubMed ID: 9045842
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interplay of the metallosensor CueR with two distinct CopZ chaperones defines copper homeostasis in
    Novoa-Aponte L; Ramírez D; Argüello JM
    J Biol Chem; 2019 Mar; 294(13):4934-4945. PubMed ID: 30718281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR.
    Changela A; Chen K; Xue Y; Holschen J; Outten CE; O'Halloran TV; Mondragón A
    Science; 2003 Sep; 301(5638):1383-7. PubMed ID: 12958362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An atypical linear Cu(I)-S2 center constitutes the high-affinity metal-sensing site in the CueR metalloregulatory protein.
    Chen K; Yuldasheva S; Penner-Hahn JE; O'Halloran TV
    J Am Chem Soc; 2003 Oct; 125(40):12088-9. PubMed ID: 14518983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A single serine residue determines selectivity to monovalent metal ions in metalloregulators of the MerR family.
    Ibáñez MM; Checa SK; Soncini FC
    J Bacteriol; 2015 May; 197(9):1606-13. PubMed ID: 25691529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein signatures that promote operator selectivity among paralog MerR monovalent metal ion regulators.
    Humbert MV; Rasia RM; Checa SK; Soncini FC
    J Biol Chem; 2013 Jul; 288(28):20510-9. PubMed ID: 23733186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR.
    Sameach H; Ghosh S; Gevorkyan-Airapetov L; Saxena S; Ruthstein S
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3053-3056. PubMed ID: 30566257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative genomics of regulation of heavy metal resistance in Eubacteria.
    Permina EA; Kazakov AE; Kalinina OV; Gelfand MS
    BMC Microbiol; 2006 Jun; 6():49. PubMed ID: 16753059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A study on the secondary structure of the metalloregulatory protein CueR: effect of pH, metal ions and DNA.
    Balogh RK; Németh E; Jones NC; Hoffmann SV; Jancsó A; Gyurcsik B
    Eur Biophys J; 2021 May; 50(3-4):491-500. PubMed ID: 33907862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. II. Repressor/activator (MerR)-RNA polymerase interaction with merOP mutants.
    Lee IW; Livrelli V; Park SJ; Totis PA; Summers AO
    J Biol Chem; 1993 Feb; 268(4):2632-9. PubMed ID: 8428940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compartment and signal-specific codependence in the transcriptional control of Salmonella periplasmic copper homeostasis.
    Pezza A; Pontel LB; López C; Soncini FC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):11573-11578. PubMed ID: 27679850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR.
    Ansari AZ; Chael ML; O'Halloran TV
    Nature; 1992 Jan; 355(6355):87-9. PubMed ID: 1731201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specificity of the Metalloregulator CueR for Monovalent Metal Ions: Possible Functional Role of a Coordinated Thiol?
    Szunyogh D; Szokolai H; Thulstrup PW; Larsen FH; Gyurcsik B; Christensen NJ; Stachura M; Hemmingsen L; Jancsó A
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15756-61. PubMed ID: 26563985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis.
    Singh S; Sevalkar RR; Sarkar D; Karthikeyan S
    FEBS J; 2018 Dec; 285(23):4424-4444. PubMed ID: 30306715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional response of Escherichia coli to external copper.
    Yamamoto K; Ishihama A
    Mol Microbiol; 2005 Apr; 56(1):215-27. PubMed ID: 15773991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria.
    Shi J; Feng Z; Xu J; Li F; Zhang Y; Wen A; Wang F; Song Q; Wang L; Cui H; Tong S; Chen P; Zhu Y; Zhao G; Wang S; Feng Y; Lin W
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2300282120. PubMed ID: 37216560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of transcriptional activation by the OmpR/PhoB-family response regulator PmrA.
    Lou YC; Huang HY; Yeh HH; Chiang WH; Chen C; Wu KP
    Nucleic Acids Res; 2023 Oct; 51(18):10049-10058. PubMed ID: 37665001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational plasticity of the coiled-coil domain of BmrR is required for bmr operator binding: the structure of unliganded BmrR.
    Kumaraswami M; Newberry KJ; Brennan RG
    J Mol Biol; 2010 Apr; 398(2):264-75. PubMed ID: 20230832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cu(ii)-based DNA labeling identifies the structural link between transcriptional activation and termination in a metalloregulator.
    Casto J; Mandato A; Hofmann L; Yakobov I; Ghosh S; Ruthstein S; Saxena S
    Chem Sci; 2022 Feb; 13(6):1693-1697. PubMed ID: 35282619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.