These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34114252)
1. Estimating heterogeneous survival treatment effect in observational data using machine learning. Hu L; Ji J; Li F Stat Med; 2021 Sep; 40(21):4691-4713. PubMed ID: 34114252 [TBL] [Abstract][Full Text] [Related]
2. Comparing methods for estimation of heterogeneous treatment effects using observational data from health care databases. Wendling T; Jung K; Callahan A; Schuler A; Shah NH; Gallego B Stat Med; 2018 Oct; 37(23):3309-3324. PubMed ID: 29862536 [TBL] [Abstract][Full Text] [Related]
3. Estimating heterogeneous survival treatment effects of lung cancer screening approaches: A causal machine learning analysis. Hu L; Lin JY; Sigel K; Kale M Ann Epidemiol; 2021 Oct; 62():36-42. PubMed ID: 34157399 [TBL] [Abstract][Full Text] [Related]
4. Nonparametric failure time: Time-to-event machine learning with heteroskedastic Bayesian additive regression trees and low information omnibus Dirichlet process mixtures. Sparapani RA; Logan BR; Maiers MJ; Laud PW; McCulloch RE Biometrics; 2023 Dec; 79(4):3023-3037. PubMed ID: 36932826 [TBL] [Abstract][Full Text] [Related]
5. A new method for clustered survival data: Estimation of treatment effect heterogeneity and variable selection. Hu L Biom J; 2024 Jan; 66(1):e2200178. PubMed ID: 38072661 [TBL] [Abstract][Full Text] [Related]
6. Estimation of causal effects of multiple treatments in observational studies with a binary outcome. Hu L; Gu C; Lopez M; Ji J; Wisnivesky J Stat Methods Med Res; 2020 Nov; 29(11):3218-3234. PubMed ID: 32450775 [TBL] [Abstract][Full Text] [Related]
7. Dynamic Treatment Regimes Using Bayesian Additive Regression Trees for Censored Outcomes. Li X; Logan BR; Hossain SMF; Moodie EEM Lifetime Data Anal; 2024 Jan; 30(1):181-212. PubMed ID: 37659991 [TBL] [Abstract][Full Text] [Related]
8. A Bayesian nonparametric approach to causal inference on quantiles. Xu D; Daniels MJ; Winterstein AG Biometrics; 2018 Sep; 74(3):986-996. PubMed ID: 29478267 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning for Causal Inference: On the Use of Cross-fit Estimators. Zivich PN; Breskin A Epidemiology; 2021 May; 32(3):393-401. PubMed ID: 33591058 [TBL] [Abstract][Full Text] [Related]
10. AIPW: An R Package for Augmented Inverse Probability-Weighted Estimation of Average Causal Effects. Zhong Y; Kennedy EH; Bodnar LM; Naimi AI Am J Epidemiol; 2021 Dec; 190(12):2690-2699. PubMed ID: 34268567 [TBL] [Abstract][Full Text] [Related]
11. Bayesian additive regression trees and the General BART model. Tan YV; Roy J Stat Med; 2019 Nov; 38(25):5048-5069. PubMed ID: 31460678 [TBL] [Abstract][Full Text] [Related]
12. Estimating treatment effects with machine learning. McConnell KJ; Lindner S Health Serv Res; 2019 Dec; 54(6):1273-1282. PubMed ID: 31602641 [TBL] [Abstract][Full Text] [Related]
13. A comparison of Bayesian and frequentist approaches to incorporating clinical and biological information for the prediction of response to standardized pediatric colitis therapy. Wang Z; Nie J; Song X; Denson LA; Hyams JS PLoS One; 2024; 19(3):e0295814. PubMed ID: 38446811 [TBL] [Abstract][Full Text] [Related]
14. A flexible approach for variable selection in large-scale healthcare database studies with missing covariate and outcome data. Lin JJ; Hu L; Huang C; Jiayi J; Lawrence S; Govindarajulu U BMC Med Res Methodol; 2022 May; 22(1):132. PubMed ID: 35508974 [TBL] [Abstract][Full Text] [Related]
15. Flexible propensity score estimation strategies for clustered data in observational studies. Chang TH; Nguyen TQ; Lee Y; Jackson JW; Stuart EA Stat Med; 2022 Nov; 41(25):5016-5032. PubMed ID: 36263918 [TBL] [Abstract][Full Text] [Related]
16. Addressing Extreme Propensity Scores in Estimating Counterfactual Survival Functions via the Overlap Weights. Cheng C; Li F; Thomas LE; Li FF Am J Epidemiol; 2022 May; 191(6):1140-1151. PubMed ID: 35238335 [TBL] [Abstract][Full Text] [Related]
17. Machine learning outcome regression improves doubly robust estimation of average causal effects. Choi BY; Wang CP; Gelfond J Pharmacoepidemiol Drug Saf; 2020 Sep; 29(9):1120-1133. PubMed ID: 32716126 [TBL] [Abstract][Full Text] [Related]
18. Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study. Tran L; Yiannoutsos C; Wools-Kaloustian K; Siika A; van der Laan M; Petersen M Int J Biostat; 2019 Feb; 15(2):. PubMed ID: 30811344 [TBL] [Abstract][Full Text] [Related]
19. Bayesian causal inference for observational studies with missingness in covariates and outcomes. Zang H; Kim HJ; Huang B; Szczesniak R Biometrics; 2023 Dec; 79(4):3624-3636. PubMed ID: 37553770 [TBL] [Abstract][Full Text] [Related]
20. Bayesian Additive Regression Trees (BART) with covariate adjusted borrowing in subgroup analyses. Pan J; Bunn V; Hupf B; Lin J J Biopharm Stat; 2022 Jul; 32(4):613-626. PubMed ID: 35737650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]