These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 34114367)

  • 1. Computational modelling of the scoliotic spine: A literature review.
    Gould SL; Cristofolini L; Davico G; Viceconti M
    Int J Numer Method Biomed Eng; 2021 Oct; 37(10):e3503. PubMed ID: 34114367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Biomechanical Modeling of Scoliotic Spine: Challenges and Opportunities.
    Jalalian A; Gibson I; Tay EH
    Spine Deform; 2013 Nov; 1(6):401-411. PubMed ID: 27927365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sagittal curvature of the spine can be a leading cause of scoliosis in pediatric spine.
    Pasha S
    Stud Health Technol Inform; 2021 Jun; 280():9-13. PubMed ID: 34190052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method to include the gravitational forces in a finite element model of the scoliotic spine.
    Clin J; Aubin CÉ; Lalonde N; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Aug; 49(8):967-77. PubMed ID: 21728065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of trunk muscle activation and intervertebral load in adolescent idiopathic scoliosis by musculoskeletal modelling approach.
    Barba N; Ignasiak D; Villa TMT; Galbusera F; Bassani T
    J Biomech; 2021 Jan; 114():110154. PubMed ID: 33279818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.
    Kiriyama Y; Watanabe K; Matsumoto M; Toyama Y; Nagura T
    J Biomech; 2014 Jan; 47(1):302-7. PubMed ID: 24183547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mechanical behaviour of normal and scoliotic vertebral segment: a preliminary numerical approach.
    Lafage V; Leborgne P; Mitulescu A; Dubousset J; Lavaste F; Skalli W
    Stud Health Technol Inform; 2002; 88():340-4. PubMed ID: 15456058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of the personalized finite element model of the adolescent idiopathic scoliosis and its significance].
    Wang Z; Liu Z; Wang Z; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1084-8. PubMed ID: 19024451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stability-based model of a growing spine with adolescent idiopathic scoliosis: A combination of musculoskeletal and finite element approaches.
    Kamal Z; Rouhi G; Arjmand N; Adeeb S
    Med Eng Phys; 2019 Feb; 64():46-55. PubMed ID: 30638786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads.
    Li XF; Liu ZD; Dai LY; Zhong GB; Zang WP
    Spine (Phila Pa 1976); 2011 Apr; 36(7):521-8. PubMed ID: 21079543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional surface rendering reconstruction of scoliotic vertebrae using a non stereo-corresponding points technique.
    Mitulescu A; Skalli W; Mitton D; De Guise JA
    Eur Spine J; 2002 Aug; 11(4):344-52. PubMed ID: 12193996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics.
    Xu M; Yang J; Lieberman I; Haddas R
    Comput Biol Med; 2017 May; 84():53-58. PubMed ID: 28342408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Based-Analysis for Pre and Post Lumbar Fusion of Adult Degenerative Scoliosis Patients.
    Haddas R; Xu M; Lieberman I; Yang J
    Spine Deform; 2019 Jul; 7(4):543-552. PubMed ID: 31202369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the influences of various force magnitudes and configurations on scoliotic curve correction using finite element analysis.
    Karimi MT; Ebrahimi MH; Mohammadi A; McGarry A
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):231-236. PubMed ID: 27896687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images.
    Pinheiro AP; Coelho JC; Veiga ACP; Vrtovec T
    Comput Methods Programs Biomed; 2018 Jul; 161():85-92. PubMed ID: 29852970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematics of the chest cage and spine during breathing in healthy individuals and in patients with adolescent idiopathic scoliosis.
    Leong JC; Lu WW; Luk KD; Karlberg EM
    Spine (Phila Pa 1976); 1999 Jul; 24(13):1310-5. PubMed ID: 10404572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of adolescent idiopathic scoliosis from body scanner image by finite element simulations.
    Grünwald ATD; Roy S; Alves-Pinto A; Lampe R
    PLoS One; 2021; 16(2):e0243736. PubMed ID: 33566808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in scoliotic curvature and lordotic angle during the early phase of degenerative lumbar scoliosis.
    Murata Y; Takahashi K; Hanaoka E; Utsumi T; Yamagata M; Moriya H
    Spine (Phila Pa 1976); 2002 Oct; 27(20):2268-73. PubMed ID: 12394905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method].
    Aubin CE; Descrimes JL; Dansereau J; Skalli W; Lavaste F; Labelle H
    Ann Chir; 1995; 49(8):749-61. PubMed ID: 8561431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.