BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34114577)

  • 1. Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy.
    Spièce J; Evangeli C; Robson AJ; El Sachat A; Haenel L; Alonso MI; Garriga M; Robinson BJ; Oehme M; Schulze J; Alzina F; Sotomayor Torres C; Kolosov OV
    Nanoscale; 2021 Jun; 13(24):10829-10836. PubMed ID: 34114577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Characterization of Local Thermal Properties in Thermoelectric Ceramics Using "Jumping-Mode" Scanning Thermal Microscopy.
    Alikin D; Zakharchuk K; Xie W; Romanyuk K; Pereira MJ; Arias-Serrano BI; Weidenkaff A; Kholkin A; Kovalevsky AV; Tselev A
    Small Methods; 2023 Apr; 7(4):e2201516. PubMed ID: 36775977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale heat transport analysis by scanning thermal microscopy: from calibration to high-resolution measurements.
    Vera-Londono L; Ruiz-Clavijo A; Pérez-Taborda JA; Martín-González M
    Nanoscale Adv; 2022 Jul; 4(15):3194-3211. PubMed ID: 36132820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of scanning thermal microscope probe with ultra-thin oxide tip and demonstration of its enhanced performance.
    Chae H; Hwang G; Kwon O
    Ultramicroscopy; 2016 Dec; 171():195-203. PubMed ID: 27694037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal transport into graphene through nanoscopic contacts.
    Menges F; Riel H; Stemmer A; Dimitrakopoulos C; Gotsmann B
    Phys Rev Lett; 2013 Nov; 111(20):205901. PubMed ID: 24289696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromachined Chip Scale Thermal Sensor for Thermal Imaging.
    Shekhawat GS; Ramachandran S; Jiryaei Sharahi H; Sarkar S; Hujsak K; Li Y; Hagglund K; Kim S; Aden G; Chand A; Dravid VP
    ACS Nano; 2018 Feb; 12(2):1760-1767. PubMed ID: 29401382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative experimental study on the cross-plane thermal conductivities of nano-constructed Sb
    Yang G; Pan J; Fu X; Hu Z; Wang Y; Wu Z; Mu E; Yan XJ; Lu MH
    Nano Converg; 2018 Dec; 5(1):22. PubMed ID: 30148043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal characterization of morphologically diverse copper phthalocyanine thin layers by scanning thermal microscopy.
    Trefon-Radziejewska D; Juszczyk J; Krzywiecki M; Hamaoui G; Horny N; Antoniow JS; Chirtoc M
    Ultramicroscopy; 2022 Mar; 233():113435. PubMed ID: 34864284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing.
    Kolosov OV; Grishin I; Jones R
    Nanotechnology; 2011 May; 22(18):185702. PubMed ID: 21415470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.