These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34114846)

  • 1. Qutrit Randomized Benchmarking.
    Morvan A; Ramasesh VV; Blok MS; Kreikebaum JM; O'Brien K; Chen L; Mitchell BK; Naik RK; Santiago DI; Siddiqi I
    Phys Rev Lett; 2021 May; 126(21):210504. PubMed ID: 34114846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Realization of Two Qutrits Gate with Tunable Coupling in Superconducting Circuits.
    Luo K; Huang W; Tao Z; Zhang L; Zhou Y; Chu J; Liu W; Wang B; Cui J; Liu S; Yan F; Yung MH; Chen Y; Yan T; Yu D
    Phys Rev Lett; 2023 Jan; 130(3):030603. PubMed ID: 36763397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-fidelity qutrit entangling gates for superconducting circuits.
    Goss N; Morvan A; Marinelli B; Mitchell BK; Nguyen LB; Naik RK; Chen L; Jünger C; Kreikebaum JM; Santiago DI; Wallman JJ; Siddiqi I
    Nat Commun; 2022 Dec; 13(1):7481. PubMed ID: 36470858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal quantum gate with hybrid qubits in circuit quantum electrodynamics.
    Yang CP; Zheng ZF; Zhang Y
    Opt Lett; 2018 Dec; 43(23):5765-5768. PubMed ID: 30499988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gatemon Benchmarking and Two-Qubit Operations.
    Casparis L; Larsen TW; Olsen MS; Kuemmeth F; Krogstrup P; Nygård J; Petersson KD; Marcus CM
    Phys Rev Lett; 2016 Apr; 116(15):150505. PubMed ID: 27127949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the robustness of the hybrid qubit computational gates through simulated randomized benchmarking protocols.
    Ferraro E; De Michielis M
    Sci Rep; 2020 Oct; 10(1):17780. PubMed ID: 33082407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-qubit silicon quantum processor with operation fidelity exceeding 99.
    Mills AR; Guinn CR; Gullans MJ; Sigillito AJ; Feldman MM; Nielsen E; Petta JR
    Sci Adv; 2022 Apr; 8(14):eabn5130. PubMed ID: 35385308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Qubit Randomized Benchmarking.
    McKay DC; Sheldon S; Smolin JA; Chow JM; Gambetta JM
    Phys Rev Lett; 2019 May; 122(20):200502. PubMed ID: 31172740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of efficient quantum gates with a superconducting qubit-qutrit circuit.
    Bækkegaard T; Kristensen LB; Loft NJS; Andersen CK; Petrosyan D; Zinner NT
    Sci Rep; 2019 Sep; 9(1):13389. PubMed ID: 31527726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Randomized Benchmarking for Multiqubit Devices.
    Proctor TJ; Carignan-Dugas A; Rudinger K; Nielsen E; Blume-Kohout R; Young K
    Phys Rev Lett; 2019 Jul; 123(3):030503. PubMed ID: 31386463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient measurement of quantum gate error by interleaved randomized benchmarking.
    Magesan E; Gambetta JM; Johnson BR; Ryan CA; Chow JM; Merkel ST; da Silva MP; Keefe GA; Rothwell MB; Ohki TA; Ketchen MB; Steffen M
    Phys Rev Lett; 2012 Aug; 109(8):080505. PubMed ID: 23002731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating biphotonic qutrits.
    Lanyon BP; Weinhold TJ; Langford NK; O'Brien JL; Resch KJ; Gilchrist A; White AG
    Phys Rev Lett; 2008 Feb; 100(6):060504. PubMed ID: 18352449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit.
    Xu Y; Hua Z; Chen T; Pan X; Li X; Han J; Cai W; Ma Y; Wang H; Song YP; Xue ZY; Sun L
    Phys Rev Lett; 2020 Jun; 124(23):230503. PubMed ID: 32603172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking quantum control methods on a 12-qubit system.
    Negrevergne C; Mahesh TS; Ryan CA; Ditty M; Cyr-Racine F; Power W; Boulant N; Havel T; Cory DG; Laflamme R
    Phys Rev Lett; 2006 May; 96(17):170501. PubMed ID: 16712281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.
    Liu T; Xiong SJ; Cao XZ; Su QP; Yang CP
    Opt Lett; 2015 Dec; 40(23):5602-5. PubMed ID: 26625061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits.
    Proctor T; Seritan S; Rudinger K; Nielsen E; Blume-Kohout R; Young K
    Phys Rev Lett; 2022 Oct; 129(15):150502. PubMed ID: 36269974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Contrast ZZ Interaction Using Superconducting Qubits with Opposite-Sign Anharmonicity.
    Zhao P; Xu P; Lan D; Chu J; Tan X; Yu H; Yu Y
    Phys Rev Lett; 2020 Nov; 125(20):200503. PubMed ID: 33258656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits.
    Xu Y; Chu J; Yuan J; Qiu J; Zhou Y; Zhang L; Tan X; Yu Y; Liu S; Li J; Yan F; Yu D
    Phys Rev Lett; 2020 Dec; 125(24):240503. PubMed ID: 33412065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking.
    Muhonen JT; Laucht A; Simmons S; Dehollain JP; Kalra R; Hudson FE; Freer S; Itoh KM; Jamieson DN; McCallum JC; Dzurak AS; Morello A
    J Phys Condens Matter; 2015 Apr; 27(15):154205. PubMed ID: 25783435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of a Walsh-Hadamard Gate in a Superconducting Qutrit.
    Yurtalan MA; Shi J; Kononenko M; Lupascu A; Ashhab S
    Phys Rev Lett; 2020 Oct; 125(18):180504. PubMed ID: 33196217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.