These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34114851)

  • 1. Competing Nodal d-Wave Superconductivity and Antiferromagnetism.
    Xu XY; Grover T
    Phys Rev Lett; 2021 May; 126(21):217002. PubMed ID: 34114851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Criticality of Antiferromagnetism and Superconductivity with Relativity.
    Liu H; Huffman E; Chandrasekharan S; Kaul RK
    Phys Rev Lett; 2022 Mar; 128(11):117202. PubMed ID: 35363026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mott transition, antiferromagnetism, and d-wave superconductivity in two-dimensional organic conductors.
    Kyung B; Tremblay AM
    Phys Rev Lett; 2006 Jul; 97(4):046402. PubMed ID: 16907597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5.
    Park T; Ronning F; Yuan HQ; Salamon MB; Movshovich R; Sarrao JL; Thompson JD
    Nature; 2006 Mar; 440(7080):65-8. PubMed ID: 16511490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals.
    Berg E; Metlitski MA; Sachdev S
    Science; 2012 Dec; 338(6114):1606-9. PubMed ID: 23258893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coexistence of s-wave superconductivity and antiferromagnetism.
    Feldbacher M; Assaad FF; Hébert F; Batrouni AG
    Phys Rev Lett; 2003 Aug; 91(5):056401. PubMed ID: 12906611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust d-Wave Superconductivity in the Square-Lattice t-J Model.
    Gong S; Zhu W; Sheng DN
    Phys Rev Lett; 2021 Aug; 127(9):097003. PubMed ID: 34506200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confinement transition of ℤ
    Gazit S; Assaad FF; Sachdev S; Vishwanath A; Wang C
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E6987-E6995. PubMed ID: 29987049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the nodal gap in the pressure-induced heavy fermion superconductor CeRhIn5.
    Park T; Bauer ED; Thompson JD
    Phys Rev Lett; 2008 Oct; 101(17):177002. PubMed ID: 18999775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiferromagnetism and superconductivity in layered organic conductors: Variational cluster approach.
    Sahebsara P; Sénéchal D
    Phys Rev Lett; 2006 Dec; 97(25):257004. PubMed ID: 17280384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors.
    Lefebvre S; Wzietek P; Brown S; Bourbonnais C; Jérome D; Mézière C; Fourmigué M; Batail P
    Phys Rev Lett; 2000 Dec; 85(25):5420-3. PubMed ID: 11136011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling superconductivity, pseudogap, and Mott transition.
    Sordi G; Sémon P; Haule K; Tremblay AM
    Phys Rev Lett; 2012 May; 108(21):216401. PubMed ID: 23003285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction-Induced Dirac Fermions from Quadratic Band Touching in Bilayer Graphene.
    Pujari S; Lang TC; Murthy G; Kaul RK
    Phys Rev Lett; 2016 Aug; 117(8):086404. PubMed ID: 27588872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Ising Gross-Neveu Criticality of a Single Dirac Cone: A Quantum Monte Carlo Study.
    Tabatabaei SM; Negari AR; Maciejko J; Vaezi A
    Phys Rev Lett; 2022 Jun; 128(22):225701. PubMed ID: 35714234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-filled layered organic superconductors and the resonating-valence-bond theory of the hubbard-heisenberg model.
    Powell BJ; McKenzie RH
    Phys Rev Lett; 2005 Feb; 94(4):047004. PubMed ID: 15783586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Monte Carlo Simulation of the Chiral Heisenberg Gross-Neveu-Yukawa Phase Transition with a Single Dirac Cone.
    Lang TC; Läuchli AM
    Phys Rev Lett; 2019 Sep; 123(13):137602. PubMed ID: 31697507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic correlations and pairing in the 1/5-depleted square lattice Hubbard model.
    Khatami E; Singh RR; Pickett WE; Scalettar RT
    Phys Rev Lett; 2014 Sep; 113(10):106402. PubMed ID: 25238374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum critical points and the sign problem.
    Mondaini R; Tarat S; Scalettar RT
    Science; 2022 Jan; 375(6579):418-424. PubMed ID: 35084971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel coexistence of superconductivity with two distinct magnetic orders.
    Llobet A; Christianson AD; Bao W; Gardner JS; Swainson IP; Lynn JW; Mignot JM; Prokes K; Pagliuso PG; Moreno NO; Sarrao JL; Thompson JD; Lacerda AH
    Phys Rev Lett; 2005 Nov; 95(21):217002. PubMed ID: 16384171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of superconductivity and valence bond order in the Hubbard-Heisenberg model for organic charge-transfer solids.
    Gomes N; Clay RT; Mazumdar S
    J Phys Condens Matter; 2013 Sep; 25(38):385603. PubMed ID: 23995074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.