These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34114858)

  • 1. Combined Test of the Gravitational Inverse-Square Law at the Centimeter Range.
    Ke J; Luo J; Shao CG; Tan YJ; Tan WH; Yang SQ
    Phys Rev Lett; 2021 May; 126(21):211101. PubMed ID: 34114858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Test of the Gravitational Inverse-Square Law at the Submillimeter Range with Dual Modulation and Compensation.
    Tan WH; Yang SQ; Shao CG; Li J; Du AB; Zhan BF; Wang QL; Luo PS; Tu LC; Luo J
    Phys Rev Lett; 2016 Apr; 116(13):131101. PubMed ID: 27081964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement for Testing the Gravitational Inverse-Square Law at the Submillimeter Range.
    Tan WH; Du AB; Dong WC; Yang SQ; Shao CG; Guan SG; Wang QL; Zhan BF; Luo PS; Tu LC; Luo J
    Phys Rev Lett; 2020 Feb; 124(5):051301. PubMed ID: 32083933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test of the gravitational inverse square law at millimeter ranges.
    Yang SQ; Zhan BF; Wang QL; Shao CG; Tu LC; Tan WH; Luo J
    Phys Rev Lett; 2012 Feb; 108(8):081101. PubMed ID: 22463510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Null test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum.
    Tu LC; Guan SG; Luo J; Shao CG; Liu LX
    Phys Rev Lett; 2007 May; 98(20):201101. PubMed ID: 17677684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Search for Lorentz Violation in Short-Range Gravity.
    Shao CG; Tan YJ; Tan WH; Yang SQ; Luo J; Tobar ME; Bailey QG; Long JC; Weisman E; Xu R; Kostelecký VA
    Phys Rev Lett; 2016 Aug; 117(7):071102. PubMed ID: 27563946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submillimeter test of the gravitational inverse-square law: a search for "large" extra dimensions.
    Hoyle CD; Schmidt U; Heckel BR; Adelberger EG; Gundlach JH; Kapner DJ; Swanson HE
    Phys Rev Lett; 2001 Feb; 86(8):1418-21. PubMed ID: 11290157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Test of the Gravitational 1/r^{2} Law at Separations down to 52  μm.
    Lee JG; Adelberger EG; Cook TS; Fleischer SM; Heckel BR
    Phys Rev Lett; 2020 Mar; 124(10):101101. PubMed ID: 32216404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of gravitational and thermal effects in a liquid-actuated torsion pendulum.
    Allocca A; Bassan M; De Laurentis M; De Rosa R; Di Fiore L; D'Onofrio L; Errico L; Garufi F; Grado A; Hoyle CD; Lucchesi D; Minenkov Y; Passeggio G; Pucacco G; Sequino V; Tarallo O; Trozzo L; Visco M
    Rev Sci Instrum; 2023 Nov; 94(11):. PubMed ID: 37909837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate measurement in the field of the earth of the general-relativistic precession of the LAGEOS II pericenter and new constraints on non-newtonian gravity.
    Lucchesi DM; Peron R
    Phys Rev Lett; 2010 Dec; 105(23):231103. PubMed ID: 21231446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weakly bound molecules as sensors of new gravitylike forces.
    Borkowski M; Buchachenko AA; Ciuryło R; Julienne PS; Yamada H; Kikuchi Y; Takasu Y; Takahashi Y
    Sci Rep; 2019 Oct; 9(1):14807. PubMed ID: 31616025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-physics implications of a recent test of the gravitational inverse-square law.
    Adelberger EG; Heckel BR; Hoedl S; Hoyle CD; Kapner DJ; Upadhye A
    Phys Rev Lett; 2007 Mar; 98(13):131104. PubMed ID: 17501180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tests of the gravitational inverse-square law below the dark-energy length scale.
    Kapner DJ; Cook TS; Adelberger EG; Gundlach JH; Heckel BR; Hoyle CD; Swanson HE
    Phys Rev Lett; 2007 Jan; 98(2):021101. PubMed ID: 17358595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower limit to the scale of an effective quantum theory of gravitation.
    Caldwell RR; Grin D
    Phys Rev Lett; 2008 Jan; 100(3):031301. PubMed ID: 18232959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision measurement of the Newtonian gravitational constant using cold atoms.
    Rosi G; Sorrentino F; Cacciapuoti L; Prevedelli M; Tino GM
    Nature; 2014 Jun; 510(7506):518-21. PubMed ID: 24965653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interposing a Varying Gravitational Constant Between Modified Newtonian Dynamics and Weak Weyl Gravity.
    Christodoulou DM; Kazanas D
    Mon Not R Astron Soc Lett; 2018 Jun; 479(1):L143-L147. PubMed ID: 32021642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-magneto-optical-trap atom gravity gradiometer for determining the Newtonian gravitational constant.
    Mao DK; Deng XB; Luo HQ; Xu YY; Zhou MK; Duan XC; Hu ZK
    Rev Sci Instrum; 2021 May; 92(5):053202. PubMed ID: 34243337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Confrontation between General Relativity and Experiment.
    Will CM
    Living Rev Relativ; 2001; 4(1):4. PubMed ID: 28163632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth's Gravitational Field.
    Nesvizhevsky VV; Protasov KV
    J Res Natl Inst Stand Technol; 2005; 110(3):269-72. PubMed ID: 27308134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiparameter Tests of General Relativity Using Multiband Gravitational-Wave Observations.
    Gupta A; Datta S; Kastha S; Borhanian S; Arun KG; Sathyaprakash BS
    Phys Rev Lett; 2020 Nov; 125(20):201101. PubMed ID: 33258624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.