These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34115082)

  • 1. Supertetrahedral anions in the phosphidosilicates Na
    Haffner A; Zeman OEO; Bräuniger T; Johrendt D
    Dalton Trans; 2021 Jul; 50(26):9123-9128. PubMed ID: 34115082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Sodium-Ion Conductivity in Supertetrahedral Phosphidosilicates.
    Haffner A; Hatz AK; Moudrakovski I; Lotsch BV; Johrendt D
    Angew Chem Int Ed Engl; 2018 May; 57(21):6155-6160. PubMed ID: 29611884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism and Fast Potassium-Ion Conduction in the T5 Supertetrahedral Phosphidosilicate KSi
    Haffner A; Hatz AK; Zeman OEO; Hoch C; Lotsch BV; Johrendt D
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13641-13646. PubMed ID: 33734533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supertetrahedral Networks and Lithium-Ion Mobility in Li
    Haffner A; Bräuniger T; Johrendt D
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13585-13588. PubMed ID: 27676447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Phosphidosilicates AE
    Weidemann ML; Calaminus R; Menzel N; Johrendt D
    Chemistry; 2024 Mar; 30(14):e202303696. PubMed ID: 38147485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure,
    Toffoletti L; Kirchhain H; Landesfeind J; Klein W; van Wüllen L; Gasteiger HA; Fässler TF
    Chemistry; 2016 Dec; 22(49):17635-17645. PubMed ID: 27786395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Li-Ion Conductivity in Superadamantanoid Lithium Thioborate Halides.
    Kaup K; Assoud A; Liu J; Nazar LF
    Angew Chem Int Ed Engl; 2021 Mar; 60(13):6975-6980. PubMed ID: 33245819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li
    Strangmüller S; Eickhoff H; Müller D; Klein W; Raudaschl-Sieber G; Kirchhain H; Sedlmeier C; Baran V; Senyshyn A; Deringer VL; van Wüllen L; Gasteiger HA; Fässler TF
    J Am Chem Soc; 2019 Sep; 141(36):14200-14209. PubMed ID: 31403777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and Characterization of the Lithium-Rich Phosphidosilicates Li
    Eickhoff H; Toffoletti L; Klein W; Raudaschl-Sieber G; Fässler TF
    Inorg Chem; 2017 Jun; 56(11):6688-6694. PubMed ID: 28537719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural design of ionic conduction paths in molecular crystals for selective and enhanced lithium ion conduction.
    Moriya M; Kato D; Sakamoto W; Yogo T
    Chemistry; 2013 Sep; 19(40):13554-60. PubMed ID: 23939993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supertetrahedral Layers Based on GaAs or InAs.
    Weippert V; Haffner A; Stamatopoulos A; Johrendt D
    J Am Chem Soc; 2019 Jul; 141(28):11245-11252. PubMed ID: 31274295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Layer Deposition of Sodium Phosphorus Oxynitride: A Conformal Solid-State Sodium-Ion Conductor.
    Nuwayhid RB; Jarry A; Rubloff GW; Gregorczyk KE
    ACS Appl Mater Interfaces; 2020 May; 12(19):21641-21650. PubMed ID: 32315520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na
    Amores M; Baker PJ; Cussen EJ; Corr SA
    Chem Commun (Camb); 2018 Sep; 54(72):10040-10043. PubMed ID: 30073221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium Superionic Conductors Based on Clusters.
    Fang H; Jena P
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):963-972. PubMed ID: 30547574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium Site Exchange and Migration in a Polar Stuffed-Cristobalite Framework Structure.
    Fernández-Carrión AJ; Rakhmatullin A; Yang L; Pitcher MJ; Massiot D; Porcher F; Allix M; Kuang X
    Inorg Chem; 2021 Apr; 60(7):4322-4331. PubMed ID: 33719424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of migration paths in fast-ion conductors with Voronoi-Dirichlet partition.
    Blatov VA; Ilyushin GD; Blatova OA; Anurova NA; Ivanov-Schits AK; Dem'yanets LN
    Acta Crystallogr B; 2006 Dec; 62(Pt 6):1010-8. PubMed ID: 17108654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li3PS4 electrolyte.
    Wang X; Xiao R; Li H; Chen L
    Phys Chem Chem Phys; 2016 Aug; 18(31):21269-77. PubMed ID: 27432279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles.
    Wang X; Xiao R; Li H; Chen L
    Phys Rev Lett; 2017 May; 118(19):195901. PubMed ID: 28548520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iodine-Substituted Lithium/Sodium
    Li S; Qiu P; Kang J; Ma Y; Zhang Y; Yan Y; Jensen TR; Guo Y; Zhang J; Chen X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17554-17564. PubMed ID: 33821603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.