These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3411516)

  • 1. Nutrient uptake by rat enterocytes during diabetes mellitus; evidence for an increased sodium electrochemical gradient.
    Debnam ES; Karasov WH; Thompson CS
    J Physiol; 1988 Mar; 397():503-12. PubMed ID: 3411516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetes mellitus and the sodium electrochemical gradient across the brush border membrane of rat intestinal enterocytes.
    Debnam ES; Ebrahim HY
    J Endocrinol; 1989 Dec; 123(3):453-9. PubMed ID: 2607255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute and chronic exposure to ethanol and the electrophysiology of the brush border membrane of rat small intestine.
    al-Balool F; Debnam ES; Mazzanti R
    Gut; 1989 Dec; 30(12):1698-703. PubMed ID: 2612984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in glucose uptake by and phlorizin binding to brush-border membrane vesicles of small intestine from streptozotocin-induced diabetic rats.
    Tsuji Y; Yamada K; Hosoya N; Takai K; Moriuchi S
    J Nutr Sci Vitaminol (Tokyo); 1988 Jun; 34(3):327-34. PubMed ID: 3183781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal D-glucose transport and membrane fluidity along crypt-villus axis of streptozocin-induced diabetic rats.
    Dudeja PK; Wali RK; Klitzke A; Brasitus TA
    Am J Physiol; 1990 Oct; 259(4 Pt 1):G571-7. PubMed ID: 2221067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na+-H+ exchange and Na+-dependent transport systems in streptozotocin diabetic rat kidneys.
    el-Seifi S; Freiberg JM; Kinsella J; Cheng L; Sacktor B
    Am J Physiol; 1987 Jan; 252(1 Pt 2):R40-7. PubMed ID: 3028167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetes mellitus and sugar transport across the brush-border and basolateral membranes of rat jejunal enterocytes.
    Debnam ES; Ebrahim HY; Swaine DJ
    J Physiol; 1990 May; 424():13-25. PubMed ID: 2144023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin regulates Na+/glucose cotransporter activity in rat small intestine.
    Fujii Y; Kaizuka M; Hashida F; Maruo J; Sato E; Yasuda H; Kurokawa T; Ishibashi S
    Biochim Biophys Acta; 1991 Mar; 1063(1):90-4. PubMed ID: 2015265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relation between microvilli membrane potential and glucose transport capacity of rat small intestine.
    Luppa D; Hartenstein H; Müller F
    Biomed Biochim Acta; 1987; 46(5):341-8. PubMed ID: 3663205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Absorption of D-glucose by the small intestine of the human fetus (using brush border membrane vesicles of the jejunum)].
    Iioka H; Moriyama IS; Hino K; Itani Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Mar; 39(3):347-51. PubMed ID: 3559320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diabetes mellitus and expression of the enterocyte renin-angiotensin system: implications for control of glucose transport across the brush border membrane.
    Wong TP; Debnam ES; Leung PS
    Am J Physiol Cell Physiol; 2009 Sep; 297(3):C601-10. PubMed ID: 19535516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of intestinal and renal Na+-glucose cotransporter by naringenin.
    Li JM; Che CT; Lau CB; Leung PS; Cheng CH
    Int J Biochem Cell Biol; 2006; 38(5-6):985-95. PubMed ID: 16289850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of enhanced Na(+)-H+ exchange of rat small intestinal brush-border membranes in streptozotocin-induced diabetes by insulin or 1,25-dihydroxycholecalciferol.
    Dudeja PK; Wali RK; Klitzke A; Sitrin MD; Brasitus TA
    J Clin Invest; 1991 May; 87(5):1755-62. PubMed ID: 1850761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid adaptation of intestinal glucose transport: a brush-border or basolateral phenomenon?
    Karasov WH; Debnam ES
    Am J Physiol; 1987 Jul; 253(1 Pt 1):G54-61. PubMed ID: 3605337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Na+-Pi cotransporter in small gut brush border by phosphonocarboxylic acids.
    Loghman-Adham M; Szczepanska-Konkel M; Yusufi AN; Van Scoy M; Dousa TP
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G244-9. PubMed ID: 2950771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of fasting on the potential difference across the brush-border membrane of enterocytes in rat small intestine.
    Debnam ES; Thompson CS
    J Physiol; 1984 Oct; 355():449-56. PubMed ID: 6436478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dietary carbohydrate enhances intestinal sugar transport in diabetic mice.
    Ferraris RP; Casirola DM; Vinnakota RR
    Diabetes; 1993 Nov; 42(11):1579-87. PubMed ID: 8405698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A; Terasaki T; Tamai I; Hirooka H
    J Pharmacol Exp Ther; 1987 May; 241(2):594-601. PubMed ID: 3572815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles.
    Welsch CA; Lachance PA; Wasserman BP
    J Nutr; 1989 Nov; 119(11):1698-704. PubMed ID: 2600675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect on uptake of D-glucose, L-leucine and L-leucylglycine into intestinal brush border membrane vesicles isolated from rats fed either oligopeptide or amino acid elemental diet].
    Obata H; Bamba T; Hosoda S
    Nihon Shokakibyo Gakkai Zasshi; 1989 Apr; 86(4):865-75. PubMed ID: 2754839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.