BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 34115233)

  • 1. Consistent scaling of whole-shoot respiration between Moso bamboo (Phyllostachys pubescens) and trees.
    Wang M; Mori S; Kurosawa Y; Ferrio JP; Yamaji K; Koyama K
    J Plant Res; 2021 Sep; 134(5):989-997. PubMed ID: 34115233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China.
    Xu M; Ji H; Zhuang S
    PLoS One; 2018; 13(2):e0193024. PubMed ID: 29451911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retranslocation and localization of nutrient elements in various organs of moso bamboo (Phyllostachys pubescens).
    Umemura M; Takenaka C
    Sci Total Environ; 2014 Sep; 493():845-53. PubMed ID: 25000580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current and potential carbon stocks in Moso bamboo forests in China.
    Li P; Zhou G; Du H; Lu D; Mo L; Xu X; Shi Y; Zhou Y
    J Environ Manage; 2015 Jun; 156():89-96. PubMed ID: 25836664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.
    Mao F; Li P; Zhou G; Du H; Xu X; Shi Y; Mo L; Zhou Y; Tu G
    J Environ Manage; 2016 May; 172():29-39. PubMed ID: 26921563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model.
    Mao F; Zhou G; Li P; Du H; Xu X; Shi Y; Mo L; Zhou Y; Tu G
    J Environ Manage; 2017 Apr; 191():126-135. PubMed ID: 28092748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association among starch storage, metabolism, related genes and growth of Moso bamboo (Phyllostachys heterocycla) shoots.
    Zhang J; Ma R; Ding X; Huang M; Shen K; Zhao S; Xiao Z; Xiu C
    BMC Plant Biol; 2021 Oct; 21(1):477. PubMed ID: 34670492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-additive effects on biodegradation of moso bamboo litter- and broadleaf tree litter-leached dissolved organic matter mixtures in a subtropical forest of southern China.
    Xu JW; Zheng Z; Ji JH; Mao R
    Sci Total Environ; 2024 Mar; 915():170104. PubMed ID: 38232826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation reduces greenhouse gas emissions while weakening ecosystem carbon sequestration of Moso bamboo forests.
    Yuan N; Wang E; Lv S; Tang X; Wang T; Wang G; Zhou Y; Zhou G; Shi Y; Xu L
    Sci Total Environ; 2023 Jun; 877():162915. PubMed ID: 36933713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon's organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve.
    Li ZJ; Lin P; He JY; Yang ZW; Lin YM
    J Zhejiang Univ Sci B; 2006 Nov; 7(11):849-57. PubMed ID: 17048297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of abandonment management on soil C and N pools in Moso bamboo forests.
    Deng X; Yin J; Xu L; Shi Y; Zhou G; Li Y; Chen G; Ye Y; Zhang F; Zhou Y; Xiong Y
    Sci Total Environ; 2020 Aug; 729():138949. PubMed ID: 32387772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological stoichiometry of nitrogen and phosphorus in Moso bamboo (Phyllostachys edulis) during the explosive growth period of new emergent shoots.
    Sun H; Li Q; Lei Z; Zhang J; Song X; Song X
    J Plant Res; 2019 Jan; 132(1):107-115. PubMed ID: 30386970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic changes in root and shoot respiration, fresh mass and surface area of Fagus crenata.
    Kurosawa Y; Mori S; Wang M; Pedro Ferrio J; Nishizono T; Yamaji K; Koyama K; Haruma T; Doyama K
    Ann Bot; 2023 Mar; 131(2):313-322. PubMed ID: 36567503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla).
    Song X; Peng C; Zhou G; Gu H; Li Q; Zhang C
    Sci Rep; 2016 May; 6():25908. PubMed ID: 27181522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of planting broadleaf trees and Moso bamboo on soil carbon mineralization and microbial community structure].
    Fang T; Li YC; Yao ZX; Li YF; Wang XM; Wang Y; Yu YF
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):82-92. PubMed ID: 33477216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis).
    Peng Z; Zhang C; Zhang Y; Hu T; Mu S; Li X; Gao J
    PLoS One; 2013; 8(11):e78944. PubMed ID: 24244391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of moso bamboo (
    Ma XR; Zheng XL; Zheng CY; Hu YT; Qin H; Chen JH; Xu QF; Liang CF
    Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):1091-1098. PubMed ID: 35543064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of Simulated Acid Rain on Soil Fungi Diversity in the Transition Zone of Moso Bamboo and Broadleaf Forest].
    Wang N; Pan XC; Wang CK; Bai SB
    Huan Jing Ke Xue; 2020 May; 41(5):2476-2484. PubMed ID: 32608867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variability of the topsoil organic carbon in the Moso bamboo forests of southern China in association with soil properties.
    Zhang H; Zhuang S; Qian H; Wang F; Ji H
    PLoS One; 2015; 10(3):e0119175. PubMed ID: 25789615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizosphere effects of moso bamboo and dominant tree species of secondary broadleaved forest on soil organic carbon mineralization.
    Xu XC; Zhang QQ; Teng QM; Zhao MS; Li YC
    Ying Yong Sheng Tai Xue Bao; 2023 Sep; 34(9):2374-2382. PubMed ID: 37899102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.