These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34115290)
1. Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK Tregub PP; Malinovskaya NA; Osipova ED; Morgun AV; Kulikov VP; Kuzovkov DA Neuromolecular Med; 2022 Jun; 24(2):155-168. PubMed ID: 34115290 [TBL] [Abstract][Full Text] [Related]
2. [The role of adenosine Al receptors and mitochondrial K+ATP channels in the mechanism of increasing the resistance to acute hypoxia in the combined effects of hypoxia and hypercapnia]. Tregub PP; Kulikov VP; Stepanova LA; Zabrodina AS; Nagibaeva ME Patol Fiziol Eksp Ter; 2014; (4):48-52. PubMed ID: 25980226 [TBL] [Abstract][Full Text] [Related]
3. Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia. Tregub PP; Malinovskaya NA; Morgun AV; Osipova ED; Kulikov VP; Kuzovkov DA; Kovzelev PD Respir Physiol Neurobiol; 2020 Jul; 278():103442. PubMed ID: 32305676 [TBL] [Abstract][Full Text] [Related]
4. Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine A1 receptor activation. Miura T; Liu Y; Kita H; Ogawa T; Shimamoto K J Am Coll Cardiol; 2000 Jan; 35(1):238-45. PubMed ID: 10636286 [TBL] [Abstract][Full Text] [Related]
5. Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. Tregub PP; Kulikov VP; Ibrahimli I; Tregub OF; Volodkin AV; Ignatyuk MA; Kostin AA; Atiakshin DA Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612476 [TBL] [Abstract][Full Text] [Related]
6. Opening of astrocytic mitochondrial ATP-sensitive potassium channels upregulates electrical coupling between hippocampal astrocytes in rat brain slices. Wang J; Li Z; Feng M; Ren K; Shen G; Zhao C; Jin X; Jiang K PLoS One; 2013; 8(2):e56605. PubMed ID: 23418587 [TBL] [Abstract][Full Text] [Related]
7. Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Horiguchi T; Kis B; Rajapakse N; Shimizu K; Busija DW Stroke; 2003 Apr; 34(4):1015-20. PubMed ID: 12649508 [TBL] [Abstract][Full Text] [Related]
8. The neuroprotective effect of diazoxide is mediated by mitochondrial ATP-dependent potassium channels in a rat model of acute subdural hematoma. Nakagawa I; Wajima D; Tamura K; Nishimura F; Park YS; Nakase H J Clin Neurosci; 2013 Jan; 20(1):144-7. PubMed ID: 23036174 [TBL] [Abstract][Full Text] [Related]
9. Mild hypercapnia induces vasodilation via adenosine triphosphate-sensitive K+ channels in parenchymal microvessels of the rat cerebral cortex. Nakahata K; Kinoshita H; Hirano Y; Kimoto Y; Iranami H; Hatano Y Anesthesiology; 2003 Dec; 99(6):1333-9. PubMed ID: 14639145 [TBL] [Abstract][Full Text] [Related]
12. Roles of purines in synaptic modulation evoked by hypercapnia in isolated spinal cord of neonatal rat in vitro. Otsuguro K; Ban M; Ohta T; Ito S Br J Pharmacol; 2009 Apr; 156(7):1167-77. PubMed ID: 19378379 [TBL] [Abstract][Full Text] [Related]
13. Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Tregub P; Malinovskaya N; Hilazheva E; Morgun A; Kulikov V Mol Biol Rep; 2023 Mar; 50(3):2317-2333. PubMed ID: 36575322 [TBL] [Abstract][Full Text] [Related]
14. Glucose-induced intestinal vasodilation via adenosine A1 receptors requires nitric oxide but not K(+)(ATP) channels. Matheson PJ; Li N; Harris PD; Zakaria el R; Garrison RN J Surg Res; 2011 Jun; 168(2):179-87. PubMed ID: 20452612 [TBL] [Abstract][Full Text] [Related]
15. Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reperfusion model. Simerabet M; Robin E; Aristi I; Adamczyk S; Tavernier B; Vallet B; Bordet R; Lebuffe G Brain Res; 2008 Nov; 1240():177-84. PubMed ID: 18793617 [TBL] [Abstract][Full Text] [Related]
16. Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal's adaptation to hypoxia. Mironova GD; Shigaeva MI; Gritsenko EN; Murzaeva SV; Gorbacheva OS; Germanova EL; Lukyanova LD J Bioenerg Biomembr; 2010 Dec; 42(6):473-81. PubMed ID: 21082228 [TBL] [Abstract][Full Text] [Related]
17. Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Zaugg M; Lucchinetti E; Spahn DR; Pasch T; Schaub MC Anesthesiology; 2002 Jul; 97(1):4-14. PubMed ID: 12131097 [TBL] [Abstract][Full Text] [Related]
18. P1075 opens mitochondrial K(ATP) channels and generates reactive oxygen species resulting in cardioprotection of rabbit hearts. Oldenburg O; Yang XM; Krieg T; Garlid KD; Cohen MV; Grover GJ; Downey JM J Mol Cell Cardiol; 2003 Sep; 35(9):1035-42. PubMed ID: 12967626 [TBL] [Abstract][Full Text] [Related]
19. Regulation of gap junctional communication by astrocytic mitochondrial K(ATP) channels following neurotoxin administration in in vitro and in vivo models. Jiang K; Wang J; Zhao C; Feng M; Shen Z; Yu Z; Xia Z Neurosignals; 2011; 19(2):63-74. PubMed ID: 21474909 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Teshima Y; Akao M; Li RA; Chong TH; Baumgartner WA; Johnston MV; Marbán E Stroke; 2003 Jul; 34(7):1796-802. PubMed ID: 12791941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]