These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34115371)

  • 1. Establishing a reference focal plane using beads for trypan-blue-based viability measurements.
    Peskin A; Lund SP; Pierce L; Kurbanov F; Chan LL; Halter M; Elliott J; Sarkar S; Chalfoun J
    J Microsc; 2021 Sep; 283(3):243-258. PubMed ID: 34115371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing a reference focal plane using convolutional neural networks and beads for brightfield imaging.
    Chalfoun J; Lund SP; Ling C; Peskin A; Pierce L; Halter M; Elliott J; Sarkar S
    Sci Rep; 2024 Apr; 14(1):7768. PubMed ID: 38565548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative, traceable determination of cell viability using absorbance microscopy.
    Babakhanova G; Zimmerman SM; Pierce LT; Sarkar S; Schaub NJ; Simon CG
    PLoS One; 2022; 17(1):e0262119. PubMed ID: 35045103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry.
    Chan LL; McCulley KJ; Kessel SL
    Methods Mol Biol; 2017; 1601():27-41. PubMed ID: 28470515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation and quantification of the morphological effect of trypan blue rupturing dead or dying cells.
    Chan LL; Rice WL; Qiu J
    PLoS One; 2020; 15(1):e0227950. PubMed ID: 31978129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On replacing the manual measurement of ACR phantom images performed by MRI technologists with an automated measurement approach.
    Panych LP; Chiou JY; Qin L; Kimbrell VL; Bussolari L; Mulkern RV
    J Magn Reson Imaging; 2016 Apr; 43(4):843-52. PubMed ID: 26395366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Benchmark for automatic noise measurement in clinical computed tomography.
    Ahmad M; Jacobsen MC; Thomas MA; Chen HS; Layman RR; Jones AK
    Med Phys; 2021 Feb; 48(2):640-647. PubMed ID: 33283284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated cell counting for Trypan blue-stained cell cultures using machine learning.
    Kuijpers L; van Veen E; van der Pol LA; Dekker NH
    PLoS One; 2023; 18(11):e0291625. PubMed ID: 38015925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended depth of field imaging for high speed cell analysis.
    Ortyn WE; Perry DJ; Venkatachalam V; Liang L; Hall BE; Frost K; Basiji DA
    Cytometry A; 2007 Apr; 71(4):215-31. PubMed ID: 17279571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound.
    Ta CN; Eghtedari M; Mattrey RF; Kono Y; Kummel AC
    Invest Radiol; 2014 Nov; 49(11):707-19. PubMed ID: 24901545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of hybridoma cell number, viability, and morphology using fully automated image analysis.
    Tucker KG; Chalder S; al-Rubeai M; Thomas CR
    Enzyme Microb Technol; 1994 Jan; 16(1):29-35. PubMed ID: 7764610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise spatial nonuniformity and the impact of statistical image reconstruction in CT myocardial perfusion imaging.
    Lauzier PT; Tang J; Speidel MA; Chen GH
    Med Phys; 2012 Jul; 39(7):4079-92. PubMed ID: 22830741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FogBank: a single cell segmentation across multiple cell lines and image modalities.
    Chalfoun J; Majurski M; Dima A; Stuelten C; Peskin A; Brady M
    BMC Bioinformatics; 2014 Dec; 15(1):431. PubMed ID: 25547324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of algorithmic CT image quality metrics with preferences of radiologists.
    Cheng Y; Abadi E; Smith TB; Ria F; Meyer M; Marin D; Samei E
    Med Phys; 2019 Nov; 46(11):4837-4846. PubMed ID: 31465538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focus-drift correction in time-lapse confocal imaging.
    Kreft M; Stenovec M; Zorec R
    Ann N Y Acad Sci; 2005 Jun; 1048():321-30. PubMed ID: 16154944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell viability analysis using trypan blue: manual and automated methods.
    Louis KS; Siegel AC
    Methods Mol Biol; 2011; 740():7-12. PubMed ID: 21468962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive value of trypan blue exclusion viability measurements for colony formation in a human tumor cloning assay.
    Cowan JD; Von Hoff DD; Neuenfeldt B; Mills GM; Clark GM
    Cancer Drug Deliv; 1984; 1(2):95-100. PubMed ID: 6544631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method.
    Chan LL; Kuksin D; Laverty DJ; Saldi S; Qiu J
    Cytotechnology; 2015 May; 67(3):461-73. PubMed ID: 24643390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.