BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34115443)

  • 1. The anoxic electrode-driven fructose catabolism of Pseudomonas putida KT2440.
    Nguyen AV; Lai B; Adrian L; Krömer JO
    Microb Biotechnol; 2021 Jul; 14(4):1784-1796. PubMed ID: 34115443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system.
    Lai B; Yu S; Bernhardt PV; Rabaey K; Virdis B; Krömer JO
    Biotechnol Biofuels; 2016; 9():39. PubMed ID: 26893611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.
    Simon O; Klaiber I; Huber A; Pfannstiel J
    J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved performance of Pseudomonas putida in a bioelectrochemical system through overexpression of periplasmic glucose dehydrogenase.
    Yu S; Lai B; Plan MR; Hodson MP; Lestari EA; Song H; Krömer JO
    Biotechnol Bioeng; 2018 Jan; 115(1):145-155. PubMed ID: 28921555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the Anoxic Phenotype of
    Lai B; Nguyen AV; Krömer JO
    Methods Protoc; 2019 Mar; 2(2):. PubMed ID: 31164607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase.
    Wohlers K; Wirtz A; Reiter A; Oldiges M; Baumgart M; Bott M
    Microb Biotechnol; 2021 Nov; 14(6):2592-2604. PubMed ID: 34437751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440.
    Schmitz S; Nies S; Wierckx N; Blank LM; Rosenbaum MA
    Front Microbiol; 2015; 6():284. PubMed ID: 25914687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic glucose uptake in Pseudomonas putida KT2440 in a bioelectrochemical system.
    Pause L; Weimer A; Wirth NT; Nguyen AV; Lenz C; Kohlstedt M; Wittmann C; Nikel PI; Lai B; Krömer JO
    Microb Biotechnol; 2024 Jan; 17(1):e14375. PubMed ID: 37990843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model.
    Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P
    Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol.
    Simon O; Klebensberger J; Mükschel B; Klaiber I; Graf N; Altenbuchner J; Huber A; Hauer B; Pfannstiel J
    J Proteomics; 2015 Jun; 122():11-25. PubMed ID: 25829261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose.
    Amendola CR; Cordell WT; Kneucker CM; Szostkiewicz CJ; Ingraham MA; Monninger M; Wilton R; Pfleger BF; Salvachúa D; Johnson CW; Beckham GT
    Metab Eng; 2024 Jan; 81():88-99. PubMed ID: 38000549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440.
    Wehrmann M; Toussaint M; Pfannstiel J; Billard P; Klebensberger J
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria.
    Volke DC; Olavarría K; Nikel PI
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose.
    Dvořák P; de Lorenzo V
    Metab Eng; 2018 Jul; 48():94-108. PubMed ID: 29864584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440.
    Zhang Y; Liu H; Liu Y; Huo K; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2021 Nov; 191():608-617. PubMed ID: 34582907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.
    Nikel PI; de Lorenzo V
    Metab Eng; 2013 Jan; 15():98-112. PubMed ID: 23149123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the zwf-pgl-eda-operon in Pseudomonas putida strains H and KT2440.
    Petruschka L; Adolf K; Burchhardt G; Dernedde J; Jürgensen J; Herrmann H
    FEMS Microbiol Lett; 2002 Sep; 215(1):89-95. PubMed ID: 12393206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism.
    Chavarría M; Kleijn RJ; Sauer U; Pflüger-Grau K; de Lorenzo V
    mBio; 2012; 3(2):. PubMed ID: 22434849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440.
    Xu Z; Pan C; Li X; Hao N; Zhang T; Gaffrey MJ; Pu Y; Cort JR; Ragauskas AJ; Qian WJ; Yang B
    Biotechnol Biofuels; 2021 Jan; 14(1):11. PubMed ID: 33413621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.