BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34115466)

  • 1. Rhodium Complexes Targeting DNA Mismatches as a Basis for New Therapeutics in Cancers Deficient in Mismatch Repair.
    Nano A; Dai J; Bailis JM; Barton JK
    Biochemistry; 2021 Jul; 60(26):2055-2063. PubMed ID: 34115466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Selective Cytotoxicity of a Fluorescent Rhodium Metalloinsertor Conjugate Results from Irreversible DNA Damage at Base Pair Mismatches.
    Nano A; Bailis JM; Mariano NF; Pham ED; Threatt SD; Barton JK
    Biochemistry; 2020 Feb; 59(5):717-726. PubMed ID: 31967788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Family of Rhodium Complexes with Selective Toxicity toward Mismatch Repair-Deficient Cancers.
    Boyle KM; Barton JK
    J Am Chem Soc; 2018 Apr; 140(16):5612-5624. PubMed ID: 29620877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular Target of a Rhodium Metalloinsertor is the DNA Base Pair Mismatch.
    Boyle KM; Nano A; Day C; Barton JK
    Chemistry; 2019 Feb; 25(12):3014-3019. PubMed ID: 30615818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.
    Bailis JM; Weidmann AG; Mariano NF; Barton JK
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6948-6953. PubMed ID: 28634291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo anticancer activity of a rhodium metalloinsertor in the HCT116 xenograft tumor model.
    Threatt SD; Synold TW; Wu J; Barton JK
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17535-17542. PubMed ID: 32661159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective cytotoxicity of rhodium metalloinsertors in mismatch repair-deficient cells.
    Ernst RJ; Komor AC; Barton JK
    Biochemistry; 2011 Dec; 50(50):10919-28. PubMed ID: 22103240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An unusual ligand coordination gives rise to a new family of rhodium metalloinsertors with improved selectivity and potency.
    Komor AC; Barton JK
    J Am Chem Soc; 2014 Oct; 136(40):14160-72. PubMed ID: 25254630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA mismatch binding and antiproliferative activity of rhodium metalloinsertors.
    Ernst RJ; Song H; Barton JK
    J Am Chem Soc; 2009 Feb; 131(6):2359-66. PubMed ID: 19175313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An inducible, isogenic cancer cell line system for targeting the state of mismatch repair deficiency.
    Bailis JM; Gordon ML; Gurgel JL; Komor AC; Barton JK; Kirsch IR
    PLoS One; 2013; 8(10):e78726. PubMed ID: 24205301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting DNA Mismatches with Rhodium Metalloinsertors.
    Boyle KM; Barton JK
    Inorganica Chim Acta; 2016 Oct; 452():3-11. PubMed ID: 27746507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators.
    Hart JR; Glebov O; Ernst RJ; Kirsch IR; Barton JK
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15359-63. PubMed ID: 17030786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological effects of simple changes in functionality on rhodium metalloinsertors.
    Weidmann AG; Komor AC; Barton JK
    Philos Trans A Math Phys Eng Sci; 2013 Jul; 371(1995):20120117. PubMed ID: 23776288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove.
    Weidmann AG; Barton JK
    Inorg Chem; 2015 Oct; 54(19):9626-36. PubMed ID: 26397309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization.
    Komor AC; Schneider CJ; Weidmann AG; Barton JK
    J Am Chem Soc; 2012 Nov; 134(46):19223-33. PubMed ID: 23137296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting DNA mismatch repair deficiency as a therapeutic strategy.
    Guillotin D; Martin SA
    Exp Cell Res; 2014 Nov; 329(1):110-5. PubMed ID: 25017099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Rhodium-Cyanine Fluorescent Probe: Detection and Signaling of Mismatches in DNA.
    Nano A; Boynton AN; Barton JK
    J Am Chem Soc; 2017 Dec; 139(48):17301-17304. PubMed ID: 29136382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective sensitivity to carboxyamidotriazole by human tumor cell lines with DNA mismatch repair deficiency.
    Yang JL; Qu XJ; Yu Y; Kohn EC; Friedlander ML
    Int J Cancer; 2008 Jul; 123(2):258-263. PubMed ID: 18464258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similarities and differences in d
    Gilewska A; Barszcz B; Masternak J; Kazimierczuk K; Sitkowski J; Wietrzyk J; Turlej E
    J Biol Inorg Chem; 2019 Jun; 24(4):591-606. PubMed ID: 31115765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking arsenite- and cadmium-generated oxidative stress to microsatellite instability in vitro and in vivo.
    Wu CL; Huang LY; Chang CL
    Free Radic Biol Med; 2017 Nov; 112():12-23. PubMed ID: 28690196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.