These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34115491)

  • 1. Pathway Complexity in Supramolecular Porphyrin Self-Assembly at an Immiscible Liquid-Liquid Interface.
    Robayo-Molina I; Molina-Osorio AF; Guinane L; Tofail SAM; Scanlon MD
    J Am Chem Soc; 2021 Jun; 143(24):9060-9069. PubMed ID: 34115491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly into temperature dependent micro-/nano-aggregates of 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin.
    Liu Q; Zhou H; Zhu J; Yang Y; Liu X; Wang D; Zhang X; Zhuo L
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4944-51. PubMed ID: 24094208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control over differentiation of a metastable supramolecular assembly in one and two dimensions.
    Fukui T; Kawai S; Fujinuma S; Matsushita Y; Yasuda T; Sakurai T; Seki S; Takeuchi M; Sugiyasu K
    Nat Chem; 2017 May; 9(5):493-499. PubMed ID: 28430199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A soft on/off switch based on the electrochemically reversible H-J interconversion of a floating porphyrin membrane.
    Molina-Osorio AF; Yamamoto S; Robayo-Molina I; Gamero-Quijano A; Nagatani H; Scanlon MD
    Chem Sci; 2021 Aug; 12(30):10227-10232. PubMed ID: 34377410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant assisted self-assembly of zinc 5,10-bis (4-pyridyl)-15,20-bis (4-octadecyloxyphenyl) porphyrin into supramolecular nanoarchitectures.
    Gautam R; Chauhan SM
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():447-57. PubMed ID: 25175235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathway complexity in supramolecular polymerization.
    Korevaar PA; George SJ; Markvoort AJ; Smulders MM; Hilbers PA; Schenning AP; De Greef TF; Meijer EW
    Nature; 2012 Jan; 481(7382):492-6. PubMed ID: 22258506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices.
    Feng J; Qiu Y; Gao H; Wu Y
    Acc Chem Res; 2024 Jan; 57(2):222-233. PubMed ID: 38170611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directing the Self-Assembly Behaviour of Porphyrin-Based Supramolecular Systems.
    van der Weegen R; Teunissen AJ; Meijer EW
    Chemistry; 2017 Mar; 23(15):3773-3783. PubMed ID: 28111823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing Interactions in Hierarchical Porphyrin Self-Assembly Introduce Robustness in Pathway Complexity.
    Mabesoone MFJ; Markvoort AJ; Banno M; Yamaguchi T; Helmich F; Naito Y; Yashima E; Palmans ARA; Meijer EW
    J Am Chem Soc; 2018 Jun; 140(25):7810-7819. PubMed ID: 29886728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-IR Absorbing J-Aggregate of an Amphiphilic BF
    Chen Z; Liu Y; Wagner W; Stepanenko V; Ren X; Ogi S; Würthner F
    Angew Chem Int Ed Engl; 2017 May; 56(21):5729-5733. PubMed ID: 28371081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning Optoelectronic and Chiroptic Properties of Peptide-Based Materials by Controlling the Pathway Complexity.
    López-Andarias A; López-Andarias J; Atienza C; Chichón FJ; Carrascosa JL; Martín N
    Chemistry; 2018 May; 24(30):7755-7760. PubMed ID: 29537693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-Controlled Pathway Complexity in Self-Assembly of Perylene Diimide-Polydiacetylene Supramolecule.
    Seo J; Khazi MI; Bae K; Kim JM
    Small; 2023 May; 19(18):e2206428. PubMed ID: 36732849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-driven optimization of multicomponent self-assembly processes.
    Korevaar PA; Grenier C; Markvoort AJ; Schenning AP; de Greef TF; Meijer EW
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17205-10. PubMed ID: 24101463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-Tuned Self-Assembled Nanostructures of Chiral l/d-Phenylalanine Derivatives of Protoporphyrin IX.
    Bobe MS; Al Kobaisi M; Bhosale SV; Bhosale SV
    ChemistryOpen; 2015 Aug; 4(4):516-22. PubMed ID: 26478848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneously mixed porphyrin J-aggregates with rod-shaped nanostructures via zwitterionic self-assembly.
    Arai Y; Tsuzuki K; Segawa H
    Phys Chem Chem Phys; 2012 Jan; 14(3):1270-6. PubMed ID: 22138679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway complexity in the self-assembly of a zinc chlorin model system of natural bacteriochlorophyll J-aggregates.
    Ogi S; Grzeszkiewicz C; Würthner F
    Chem Sci; 2018 Mar; 9(10):2768-2773. PubMed ID: 29732062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing Assembly Dynamics of All-Liquid 3D Architectures.
    Gu PY; Kim PY; Chai Y; Ashby PD; Xu QF; Liu F; Chen Q; Lu JM; Russell TP
    Small; 2022 Feb; 18(6):e2105017. PubMed ID: 35142068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porphyrin Supramolecular Arrays Formed by Weakly Interacting Meso-Functional Groups on Au(111).
    Sánchez-Muñoz E; Gárate-Morales JL; Sandoval-Lira J; Hernández-Pérez JM; Aguilar-Sánchez R
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31547376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.